我需要一段MATLAB的模因算法代码,其中适应度函数为单机调度中目标函数为加权总延迟最小,交叉操作使用PMX,不进行变异操作,局部搜索使用模拟退火算法
时间: 2024-05-10 12:20:31 浏览: 71
隶属函数在MATLAB中应用_隶属度函数_隶属函数matlab_隶属度_隶属函数在MATLAB中应用_
5星 · 资源好评率100%
以下是一段MATLAB的模因算法代码,其中适应度函数为单机调度中目标函数为加权总延迟最小,交叉操作使用PMX,不进行变异操作,局部搜索使用模拟退火算法:
```
% 定义适应度函数
function fitness = calculateFitness(schedule)
% 计算加权总延迟
totalDelay = 0;
for i = 1:length(schedule)
totalDelay = totalDelay + schedule(i).weight * max(0, schedule(i).finish - schedule(i).due);
end
% 适应度为加权总延迟的相反数
fitness = -totalDelay;
end
% 定义交叉操作
function offspring = crossover(parent1, parent2)
% 使用PMX交叉操作
n = length(parent1);
cut1 = randi(n-1);
cut2 = randi([cut1+1, n]);
offspring = parent1;
mapping = zeros(1, n);
mapping(cut1:cut2) = parent2(cut1:cut2);
for i = cut1:cut2
if offspring(i) == mapping(i)
continue;
end
idx = find(mapping == offspring(i));
while ~isempty(idx) && (idx < cut1 || idx > cut2)
offspring(i) = mapping(idx);
idx = find(mapping == offspring(i));
end
end
end
% 定义局部搜索操作
function newSchedule = localSearch(schedule)
% 使用模拟退火算法进行局部搜索
T = 100;
alpha = 0.9;
k = 1;
currentSchedule = schedule;
currentFitness = calculateFitness(currentSchedule);
while T > 1e-3
newSchedule = currentSchedule;
% 随机交换两个任务的顺序
idx1 = randi(length(newSchedule));
idx2 = randi(length(newSchedule));
temp = newSchedule(idx1);
newSchedule(idx1) = newSchedule(idx2);
newSchedule(idx2) = temp;
newFitness = calculateFitness(newSchedule);
delta = newFitness - currentFitness;
if delta < 0 || exp(-delta/T) > rand()
currentSchedule = newSchedule;
currentFitness = newFitness;
end
T = alpha * T;
k = k + 1;
end
newSchedule = currentSchedule;
end
% 定义模因算法
function [bestSchedule, bestFitness] = memeticAlgorithm(schedule)
% 设置参数
popSize = 50;
maxGenerations = 100;
eliteCount = 5;
% 初始化种群
population = repmat(schedule, popSize, 1);
for i = 1:popSize
population(i).order = randperm(length(schedule));
end
% 进化过程
for generation = 1:maxGenerations
% 计算适应度
fitness = arrayfun(@calculateFitness, population);
% 选择精英
[~, eliteIdx] = sort(fitness, 'descend');
elite = population(eliteIdx(1:eliteCount));
% 进行交叉操作
offspring = repmat(schedule, popSize-eliteCount, 1);
for i = 1:popSize-eliteCount
parent1 = elite(randi(eliteCount));
parent2 = elite(randi(eliteCount));
offspring(i) = crossover(parent1, parent2);
end
% 合并种群
population = [elite; offspring];
% 进行局部搜索操作
for i = 1:popSize
population(i) = localSearch(population(i));
end
end
% 返回最优解和最优适应度
fitness = arrayfun(@calculateFitness, population);
[~, bestIdx] = max(fitness);
bestSchedule = population(bestIdx);
bestFitness = fitness(bestIdx);
end
```
注意:此代码仅供参考,实际应用中可能需要根据具体问题进行修改和调整。
阅读全文