Piecewise exponential model set.seed(1) uniq <- with(Data, sort(unique(Time[Death==1]))) a <- c(0, uniq[-length(uniq)] + diff(uniq)/2, max(Data$Time)+1) # Cut points jagsData <- with(Data, list( n = nrow(Data), # Number of subjects J = length(uniq), # Num of gaps between failure times K = length(uniq), # Num of lambda values to estimate t = Time, # Time on study d = Death, # 1 if event (death) observed Z = Group - 1.5, # Group (+0.5 / -0.5) a = a, # Cut points period = 1:length(uniq))) # Maps lambdas to intervals fit <- jags.model('piecewise.jag', data=jagsData, n.chains=4, n.adapt=1000) post <- jags.samples(fit, c('beta', 'lam'), 10000) post1 <- post在给定代码中,fit里的piecewise.jags具体是什么?这里应该有一个model的function。给定数据集包括变量Group,将40个对象分为两组,其中包括生存时间t和是否死亡的状态d。请帮我用R code写好这个model,给定beta服从正态分布,lambda服从gamma分布
时间: 2023-06-18 07:08:58 浏览: 94
在给定的数据集中,我们需要使用JAGS来拟合一个分段指数模型,其中beta服从正态分布,lambda服从gamma分布。下面是代码实现:
```
# Load JAGS library
library(rjags)
# Define the JAGS model
modelString = "
model {
# Prior for beta
beta ~ dnorm(0, 0.001)
# Priors for lambda
for (j in 1:J) {
lam[j] ~ dgamma(0.01, 0.01)
}
# Likelihood
for (i in 1:n) {
# Determine which interval the time is in
for (j in 1:J) {
if (t[i] <= a[j+1]) {
break
}
}
# Probability of event
hazard <- lam[j] * exp(beta * Z[i])
surv <- exp(-integrate(hazard, t[i], a[j+1])$value)
d[i] ~ dbern(1 - surv)
}
}
"
# Create JAGS model
jagsModel = jags.model(textConnection(modelString), data = jagsData, n.chains = 4)
# Burn-in
update(jagsModel, n.iter = 1000)
# Sample from posterior distribution
posterior = coda.samples(jagsModel, c("beta", "lam"), n.iter = 10000)
# Extract results
summary(posterior)
```
在上述代码中,我们首先定义了JAGS模型字符串`modelString`,其中我们指定了beta服从正态分布,lambda服从gamma分布,并使用了指数分布来计算事件发生的概率。然后,我们使用`jags.model`函数创建JAGS模型,并使用`update`函数进行燃烧期。最后,我们使用`coda.samples`函数从后验分布中抽样,并使用`summary`函数提取结果。
请注意,我们需要定义`jagsData`来包含我们的数据,包括变量`Group`、生存时间`t`和是否死亡状态`d`。我们还需要定义`uniq`向量,其中包含时间间隔。在JAGS模型中,我们将使用`a`向量来定义这些间隔的切点。
阅读全文