class OverlapPatchEmbed(nn.Module):
时间: 2023-06-28 08:08:20 浏览: 179
浅析PyTorch中nn.Module的使用
5星 · 资源好评率100%
这是一个 PyTorch 中的自定义模块,用于将输入的图像划分成若干个重叠的补丁,并将每个补丁转换为向量形式。具体实现请参考以下代码:
```
import torch.nn as nn
import torch.nn.functional as F
class OverlapPatchEmbed(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
self.img_size = img_size
self.patch_size = patch_size
self.n_patches = (img_size // patch_size) ** 2
self.patch_embed = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.proj = nn.Linear(embed_dim * (patch_size ** 2), embed_dim)
def forward(self, x):
# Input shape: [batch_size, channels, height, width]
patches = self.patch_embed(x) # [batch_size, embed_dim, n_patches_sqrt, n_patches_sqrt]
patches = patches.flatten(2) # [batch_size, embed_dim, n_patches]
patches = patches.transpose(1, 2) # [batch_size, n_patches, embed_dim]
patches = self.proj(patches) # [batch_size, n_patches, embed_dim]
return patches
```
其中,`img_size` 表示输入图像的大小,`patch_size` 表示每个补丁的大小,`in_chans` 表示输入图像的通道数,`embed_dim` 表示每个补丁转换后的向量维度。 `patch_embed` 使用 `nn.Conv2d` 对输入图像进行划分,`proj` 使用 `nn.Linear` 将每个补丁的向量维度转换为 `embed_dim`。在 `forward` 方法中,首先对输入图像进行划分得到补丁,然后将补丁的向量维度转换为 `embed_dim`,最后返回补丁的向量表示。
阅读全文