class ResUp(nn.Module):
时间: 2023-07-06 13:26:44 浏览: 113
回到顶部模块
这是一个PyTorch的神经网络模块,用于上采样图像或特征图。其实现方式为ResNet中的上采样模块,通常用于图像分割或图像生成等任务中。以下是该模块的代码实现:
```python
import torch.nn as nn
class ResUp(nn.Module):
def __init__(self, in_channels, out_channels, stride):
super(ResUp, self).__init__()
self.conv1 = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, output_padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels, out_channels * 4, kernel_size=1, stride=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels * 4)
self.relu = nn.ReLU(inplace=True)
self.upsample = nn.Sequential(
nn.ConvTranspose2d(in_channels, out_channels * 4, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * 4)
)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
identity = self.upsample(identity)
out += identity
out = self.relu(out)
return out
```
该模块输入的张量shape为$[batch\_size, in\_channels, height, width]$,输出的张量shape为$[batch\_size, out\_channels * 4, height * stride, width * stride]$。其中,$stride$表示上采样的倍数。
阅读全文