class Informer(nn.Module): 意思
时间: 2024-05-29 09:15:23 浏览: 133
这是一个定义了一个PyTorch神经网络模型的类(class),名为 Infromer。该类继承了nn.Module类,也就是说,Informer类是基于nn.Module类实现的。通常在PyTorch中,我们定义神经网络模型都是通过继承nn.Module类并实现forward()函数来实现的。forward()函数描述了输入如何在神经网络中流动,最终输出模型的预测结果。Informer类中应该包含了神经网络的各层结构和参数,以及forward()函数的实现。
相关问题
informer代码
Informer是一种基于Transformer的序列模型,主要用于时间序列预测任务。其最大的特点是引入了全局和局部注意力机制,使得模型更加准确和稳定。以下是Informer的PyTorch实现代码示例:
```python
import torch
import torch.nn as nn
import numpy as np
class InformerEncoderLayer(nn.Module):
def __init__(self, embed_dim, num_heads, dim_feedforward, dropout_rate=0.0):
super(InformerEncoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate)
self.linear1 = nn.Linear(embed_dim, dim_feedforward)
self.dropout = nn.Dropout(dropout_rate)
self.linear2 = nn.Linear(dim_feedforward, embed_dim)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout_rate)
self.dropout2 = nn.Dropout(dropout_rate)
def forward(self, x):
# self-attention
res, _ = self.self_attn(x, x, x)
x = x + self.dropout1(res)
x = self.norm1(x)
# feedforward
res = self.linear2(self.dropout(torch.relu(self.linear1(x))))
x = x + self.dropout2(res)
x = self.norm2(x)
return x
class InformerEncoder(nn.Module):
def __init__(self, input_size, input_dim, embed_dim, num_heads, num_layers):
super(InformerEncoder, self).__init__()
self.input_fc = nn.Linear(input_size * input_dim, embed_dim)
self.pos_encoding = nn.Parameter(torch.zeros(1, input_size, embed_dim))
self.layers = nn.ModuleList([InformerEncoderLayer(embed_dim, num_heads, dim_feedforward=2048) for _ in range(num_layers)])
def forward(self, x):
# flatten input
x = x.reshape(x.shape[0], -1)
# input projection
x = self.input_fc(x)
# add position encoding
x = x.unsqueeze(1) + self.pos_encoding
# pass through encoder layers
for layer in self.layers:
x = layer(x)
return x
class InformerDecoderLayer(nn.Module):
def __init__(self, embed_dim, num_heads, dim_feedforward, dropout_rate=0.0):
super(InformerDecoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate)
self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate)
self.linear1 = nn.Linear(embed_dim, dim_feedforward)
self.dropout = nn.Dropout(dropout_rate)
self.linear2 = nn.Linear(dim_feedforward, embed_dim)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
self.norm3 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout_rate)
self.dropout2 = nn.Dropout(dropout_rate)
self.dropout3 = nn.Dropout(dropout_rate)
def forward(self, x, encoder_out):
# self-attention
res, _ = self.self_attn(x, x, x)
x = x + self.dropout1(res)
x = self.norm1(x)
# encoder-decoder attention
res, _ = self.multihead_attn(x, encoder_out, encoder_out)
x = x + self.dropout2(res)
x = self.norm2(x)
# feedforward
res = self.linear2(self.dropout(torch.relu(self.linear1(x))))
x = x + self.dropout3(res)
x = self.norm3(x)
return x
class InformerDecoder(nn.Module):
def __init__(self, output_size, output_dim, embed_dim, num_heads, num_layers):
super(InformerDecoder, self).__init__()
self.output_fc = nn.Linear(output_dim, embed_dim)
self.pos_encoding = nn.Parameter(torch.zeros(1, output_size, embed_dim))
self.layers = nn.ModuleList([InformerDecoderLayer(embed_dim, num_heads, dim_feedforward=2048) for _ in range(num_layers)])
self.output_proj = nn.Linear(embed_dim, output_dim)
def forward(self, x, encoder_out):
# output projection
x = self.output_fc(x)
# add position encoding
x = x.unsqueeze(1) + self.pos_encoding
# pass through decoder layers
for layer in self.layers:
x = layer(x, encoder_out)
# output projection
x = self.output_proj(x)
return x
class Informer(nn.Module):
def __init__(self, input_size, input_dim, output_size, output_dim, embed_dim=64, num_heads=4, enc_layers=2, dec_layers=1):
super(Informer, self).__init__()
self.encoder = InformerEncoder(input_size, input_dim, embed_dim, num_heads, enc_layers)
self.decoder = InformerDecoder(output_size, output_dim, embed_dim, num_heads, dec_layers)
def forward(self, x):
encoder_out = self.encoder(x[:, :-1])
decoder_out = self.decoder(x[:, -1], encoder_out)
return decoder_out
# example usage
model = Informer(input_size=24, input_dim=1, output_size=24, output_dim=1)
x = torch.randn(16, 25, 1)
y = model(x)
print(y.shape)
```
informer模型代码
以下是一个简单的informer模型的PyTorch代码实现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Informer(nn.Module):
def __init__(self, enc_in, dec_in, out_seq_len, n_heads, e_layers, d_layers, d_ff, dropout, activation='relu'):
super(Informer, self).__init__()
self.encoder = Encoder(enc_in, n_heads, e_layers, d_ff, dropout, activation)
self.decoder = Decoder(dec_in, out_seq_len, n_heads, d_layers, d_ff, dropout, activation)
self.out = nn.Linear(dec_in, out_seq_len)
def forward(self, x):
enc_out, attn = self.encoder(x)
dec_out = self.decoder(enc_out, attn)
out = self.out(dec_out)
return out
class Encoder(nn.Module):
def __init__(self, input_dim, n_heads, n_layers, d_ff, dropout, activation):
super(Encoder, self).__init__()
self.layers = nn.ModuleList()
for i in range(n_layers):
self.layers.append(EncoderLayer(input_dim, n_heads, d_ff, dropout, activation))
def forward(self, x):
attn_weights = []
for layer in self.layers:
x, attn_weight = layer(x)
attn_weights.append(attn_weight)
return x, attn_weights
class EncoderLayer(nn.Module):
def __init__(self, input_dim, n_heads, d_ff, dropout, activation):
super(EncoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(n_heads, input_dim, input_dim, dropout)
self.feed_forward = FeedForward(input_dim, d_ff, activation, dropout)
self.norm1 = nn.LayerNorm(input_dim)
self.norm2 = nn.LayerNorm(input_dim)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
def forward(self, x):
# self-attention
residual = x
x, attn_weight = self.self_attn(x, x, x)
x = self.norm1(residual + self.dropout1(x))
# feed forward
residual = x
x = self.feed_forward(x)
x = self.norm2(residual + self.dropout2(x))
return x, attn_weight
class Decoder(nn.Module):
def __init__(self, input_dim, out_seq_len, n_heads, n_layers, d_ff, dropout, activation):
super(Decoder, self).__init__()
self.layers = nn.ModuleList()
for i in range(n_layers):
self.layers.append(DecoderLayer(input_dim, n_heads, d_ff, dropout, activation))
self.out_seq_len = out_seq_len
self.linear = nn.Linear(input_dim, out_seq_len)
def forward(self, enc_out, attn_weights):
# mask future positions
mask = torch.triu(torch.ones(self.out_seq_len, self.out_seq_len), diagonal=1)
mask = mask.unsqueeze(0).bool().to(enc_out.device)
# self-attention
x = torch.zeros(enc_out.shape[0], self.out_seq_len, enc_out.shape[-1]).to(enc_out.device)
for i in range(self.out_seq_len):
residual = x[:, i, :]
x[:, i, :], attn_weight = self.layers[i](x[:, :i+1, :], enc_out, mask, attn_weights)
x[:, i, :] = residual + x[:, i, :]
# linear
out = self.linear(x)
return out
class DecoderLayer(nn.Module):
def __init__(self, input_dim, n_heads, d_ff, dropout, activation):
super(DecoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(n_heads, input_dim, input_dim, dropout)
self.enc_attn = MultiHeadAttention(n_heads, input_dim, input_dim, dropout)
self.feed_forward = FeedForward(input_dim, d_ff, activation, dropout)
self.norm1 = nn.LayerNorm(input_dim)
self.norm2 = nn.LayerNorm(input_dim)
self.norm3 = nn.LayerNorm(input_dim)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
def forward(self, x, enc_out, mask, attn_weights):
# self-attention
residual = x[:, -1, :]
x[:, -1, :], attn_weight1 = self.self_attn(x[:, -1:, :], x[:, -1:, :], x[:, -1:, :], mask)
x[:, -1, :] = residual + self.dropout1(x[:, -1, :])
# encoder-decoder attention
residual = x[:, -1, :]
x[:, -1, :], attn_weight2 = self.enc_attn(x[:, -1:, :], enc_out, enc_out)
x[:, -1, :] = residual + self.dropout2(x[:, -1, :])
# feed forward
residual = x[:, -1, :]
x[:, -1, :] = self.feed_forward(x[:, -1, :])
x[:, -1, :] = residual + self.dropout3(x[:, -1, :])
attn_weights.append(torch.cat([attn_weight1, attn_weight2], dim=1))
return x, attn_weights
class MultiHeadAttention(nn.Module):
def __init__(self, n_heads, q_dim, k_dim, dropout):
super(MultiHeadAttention, self).__init__()
self.n_heads = n_heads
self.q_dim = q_dim
self.k_dim = k_dim
self.query = nn.Linear(q_dim, q_dim * n_heads)
self.key = nn.Linear(k_dim, k_dim * n_heads)
self.value = nn.Linear(k_dim, k_dim * n_heads)
self.out = nn.Linear(k_dim * n_heads, q_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, mask=None):
batch_size = query.shape[0]
# linear
query = self.query(query).view(batch_size, -1, self.n_heads, self.q_dim // self.n_heads).transpose(1, 2)
key = self.key(key).view(batch_size, -1, self.n_heads, self.k_dim // self.n_heads).transpose(1, 2)
value = self.value(value).view(batch_size, -1, self.n_heads, self.k_dim // self.n_heads).transpose(1, 2)
# dot product attention
attn_weight = torch.matmul(query, key.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.k_dim // self.n_heads).float().to(query.device))
if mask is not None:
attn_weight = attn_weight.masked_fill(mask == False, -1e9)
attn_weight = F.softmax(attn_weight, dim=-1)
attn_weight = self.dropout(attn_weight)
# linear
output = torch.matmul(attn_weight, value).transpose(1, 2).contiguous().view(batch_size, -1, self.q_dim)
output = self.out(output)
return output, attn_weight
class FeedForward(nn.Module):
def __init__(self, input_dim, hidden_dim, activation, dropout):
super(FeedForward, self).__init__()
self.linear1 = nn.Linear(input_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, input_dim)
self.activation = getattr(F, activation)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.linear1(x)
x = self.activation(x)
x = self.dropout(x)
x = self.linear2(x)
return x
```
这里实现了一个简单的Informer模型,包括Encoder、Decoder和MultiHeadAttention等模块。你可以根据具体的任务和数据来调整模型的参数和结构,以获得更好的性能。
阅读全文