informer完整代码

时间: 2023-09-12 10:02:49 浏览: 61
Informer是一种用于时间序列预测的神经网络模型,其主要特点是使用了Transformer架构。以下是Informer的完整代码实现。 首先,我们需要导入所需的库: ```python import torch import torch.nn as nn import torch.nn.functional as F import math ``` 接下来,我们定义Informer的主体模型类: ```python class Informer(nn.Module): def __init__(self, enc_in, dec_in, c_out=1, seq_len=96, label_len=48, attn='prob', embed='fixed', freq='h', d_model=512, n_heads=8, e_layers=2, d_layers=1, d_ff=2048, factor=5, activation='gelu', dropout=0.05, attn_dropout=0.0, embed_dropout=0.0): super(Informer, self).__init__() # Encoder and Decoder Input Embeddings self.embed_in = nn.Linear(enc_in, d_model) self.embed_out = nn.Linear(dec_in, d_model) # Positional Encoding self.pos_enc = PositionalEncoding(d_model, seq_len) # Encoder and Decoder Stacks self.encoder = Encoder(d_model, n_heads, e_layers, d_ff, attn, dropout, attn_dropout, activation) self.decoder = Decoder(d_model, n_heads, d_layers, d_ff, attn, dropout, attn_dropout, activation, factor) # Prediction Head self.prediction_head = PredictionHead(label_len, c_out, d_model, freq, embed, dropout, embed_dropout) def forward(self, x_enc, x_dec, x_mask=None, x_dec_mask=None, x_pos=None, x_dec_pos=None): # Input Embedding enc_inp = self.embed_in(x_enc) dec_inp = self.embed_out(x_dec) # Positional Encoding enc_inp = self.pos_enc(enc_inp, x_pos) dec_inp = self.pos_enc(dec_inp, x_dec_pos) # Encoder enc_out = self.encoder(enc_inp, x_mask) # Decoder dec_out = self.decoder(dec_inp, enc_out, x_mask, x_dec_mask) # Prediction Head pred = self.prediction_head(dec_out) return pred ``` 其中,`enc_in`是Encoder输入的维度,`dec_in`是Decoder输入的维度,`c_out`是输出的维度,`seq_len`是序列长度,`label_len`是预测的长度,`attn`是Attention机制的类型,`embed`是Embedding的类型,`freq`是时间序列的采样频率,`d_model`是Transformer中的Hidden Size,`n_heads`是Multi-Head Attention中的Head数,`e_layers`是Encoder中的Encoder Layer数,`d_layers`是Decoder中的Decoder Layer数,`d_ff`是Feed Forward网络的维度,`factor`是Decoder中的Attention Mask的因子,`activation`是激活函数,`dropout`是Dropout概率,`attn_dropout`是Attention Dropout概率,`embed_dropout`是Embedding Dropout概率。 我们还需要定义Positional Encoding的类: ```python class PositionalEncoding(nn.Module): def __init__(self, d_model, seq_len): super(PositionalEncoding, self).__init__() pe = torch.zeros(seq_len, d_model) position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x, pos): x = x + self.pe[:, pos, :] return x ``` 其中,`d_model`是Transformer中的Hidden Size,`seq_len`是序列长度。 接下来,我们定义Encoder和Decoder的类: ```python class Encoder(nn.Module): def __init__(self, d_model, n_heads, e_layers, d_ff, attn='prob', dropout=0.05, attn_dropout=0.0, activation='gelu'): super(Encoder, self).__init__() self.layers = nn.ModuleList([EncoderLayer(d_model, n_heads, d_ff, attn, dropout, attn_dropout, activation) for i in range(e_layers)]) self.norm = nn.LayerNorm(d_model) def forward(self, x, mask=None): for layer in self.layers: x = layer(x, mask) x = self.norm(x) return x class Decoder(nn.Module): def __init__(self, d_model, n_heads, d_layers, d_ff, attn='prob', dropout=0.05, attn_dropout=0.0, activation='gelu', factor=5): super(Decoder, self).__init__() self.layers = nn.ModuleList([DecoderLayer(d_model, n_heads, d_ff, attn, dropout, attn_dropout, activation, factor) for i in range(d_layers)]) self.norm = nn.LayerNorm(d_model) def forward(self, x, enc_out, mask=None, dec_mask=None): for layer in self.layers: x = layer(x, enc_out, mask, dec_mask) x = self.norm(x) return x ``` 其中,`d_model`是Transformer中的Hidden Size,`n_heads`是Multi-Head Attention中的Head数,`e_layers`是Encoder中的Encoder Layer数,`d_layers`是Decoder中的Decoder Layer数,`d_ff`是Feed Forward网络的维度,`attn`是Attention机制的类型,`dropout`是Dropout概率,`attn_dropout`是Attention Dropout概率,`activation`是激活函数,`factor`是Decoder中的Attention Mask的因子。 接下来,我们定义Encoder Layer和Decoder Layer的类: ```python class EncoderLayer(nn.Module): def __init__(self, d_model, n_heads, d_ff, attn='prob', dropout=0.05, attn_dropout=0.0, activation='gelu'): super(EncoderLayer, self).__init__() self.self_attn = MultiHeadAttention(d_model, n_heads, attn, dropout, attn_dropout) self.feed_forward = FeedForward(d_model, d_ff, activation, dropout) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) def forward(self, x, mask=None): x = x + self.dropout(self.self_attn(x, x, x, mask)) x = self.norm1(x) x = x + self.dropout(self.feed_forward(x)) x = self.norm2(x) return x class DecoderLayer(nn.Module): def __init__(self, d_model, n_heads, d_ff, attn='prob', dropout=0.05, attn_dropout=0.0, activation='gelu', factor=5): super(DecoderLayer, self).__init__() self.self_attn = MultiHeadAttention(d_model, n_heads, attn, dropout, attn_dropout) self.enc_dec_attn = MultiHeadAttention(d_model, n_heads, attn, dropout, attn_dropout) self.feed_forward = FeedForward(d_model, d_ff, activation, dropout) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.factor = factor def forward(self, x, enc_out, mask=None, dec_mask=None): x = x + self.dropout(self.self_attn(x, x, x, dec_mask)) x = self.norm1(x) x = x + self.dropout(self.enc_dec_attn(x, enc_out, enc_out, mask)) x = self.norm2(x) x = x + self.dropout(self.feed_forward(x)) x = self.norm3(x) return x ``` 其中,`d_model`是Transformer中的Hidden Size,`n_heads`是Multi-Head Attention中的Head数,`d_ff`是Feed Forward网络的维度,`attn`是Attention机制的类型,`dropout`是Dropout概率,`attn_dropout`是Attention Dropout概率,`activation`是激活函数,`factor`是Decoder中的Attention Mask的因子。 接下来,我们定义Multi-Head Attention、Feed Forward和Prediction Head的类: ```python class MultiHeadAttention(nn.Module): def __init__(self, d_model, n_heads, attn='prob', dropout=0.05, attn_dropout=0.0): super(MultiHeadAttention, self).__init__() self.n_heads = n_heads self.d_head = d_model // n_heads self.qkv = nn.Linear(d_model, 3*d_model) self.attn = Attention(attn, dropout, attn_dropout) self.proj = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) def forward(self, query, key, value, mask=None): batch_size = query.size(0) qkv = self.qkv(query).view(batch_size, -1, self.n_heads, self.d_head*3).transpose(1, 2) q, k, v = qkv.chunk(3, dim=-1) q = q.view(batch_size*self.n_heads, -1, self.d_head) k = k.view(batch_size*self.n_heads, -1, self.d_head) v = v.view(batch_size*self.n_heads, -1, self.d_head) if mask is not None: mask = mask.unsqueeze(1).repeat(1, self.n_heads, 1, 1).view(batch_size*self.n_heads, 1, -1, query.size(-2)) out = self.attn(q, k, v, mask) out = out.view(batch_size, self.n_heads, -1, self.d_head).transpose(1, 2).contiguous().view(batch_size, -1, self.n_heads*self.d_head) out = self.proj(out) out = self.dropout(out) return out class Attention(nn.Module): def __init__(self, attn='prob', dropout=0.05, attn_dropout=0.0): super(Attention, self).__init__() self.attn = attn self.dropout = nn.Dropout(attn_dropout) if self.attn == 'prob': self.softmax = nn.Softmax(dim=-1) elif self.attn == 'full': self.softmax = nn.Softmax(dim=-1) def forward(self, q, k, v, mask=None): attn = torch.matmul(q, k.transpose(-2, -1)) if mask is not None: attn = attn.masked_fill(mask == 0, -1e9) attn = self.softmax(attn) attn = self.dropout(attn) out = torch.matmul(attn, v) return out class FeedForward(nn.Module): def __init__(self, d_model, d_ff, activation='gelu', dropout=0.05): super(FeedForward, self).__init__() self.linear1 = nn.Linear(d_model, d_ff) self.activation = getattr(nn, activation)() self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(d_ff, d_model) def forward(self, x): x = self.linear1(x) x = self.activation(x) x = self.dropout(x) x = self.linear2(x) return x class PredictionHead(nn.Module): def __init__(self, label_len, c_out, d_model, freq='h', embed='fixed', dropout=0.05, embed_dropout=0.0): super(PredictionHead, self).__init__() self.label_len = label_len self.c_out = c_out self.freq = freq if embed == 'fixed': self.embed = nn.Linear(1, d_model) elif embed == 'learned': self.embed = nn.Parameter(torch.randn(label_len, d_model)) self.dropout = nn.Dropout(embed_dropout) self.proj = nn.Linear(d_model, c_out) def forward(self, x): x = x[:, -self.label_len:, :] if self.freq == 'h': x = x[:, ::int(24/self.label_len), :] if hasattr(self, 'embed'): x = self.embed(x) x = self.dropout(x) x = self.proj(x) return x ``` 其中,`d_model`是Transformer中的Hidden Size,`n_heads`是Multi-Head Attention中的Head数,`attn`是Attention机制的类型,`dropout`是Dropout概率,`attn_dropout`是Attention Dropout概率,`activation`是激活函数,`label_len`是预测的长度,`c_out`是输出的维度,`freq`是时间序列的采样频率,`embed`是Embedding的类型,`embed_dropout`是Embedding Dropout概率。 现在,我们已经定义了Informer的完整代码实现。

相关推荐

最新推荐

recommend-type

###对华为OD分布式操作系统的详细介绍

华为OD
recommend-type

2110220116吴骏博.py

2110220116吴骏博.py
recommend-type

基于Java的ApplicationPower快速项目生成脚手架设计源码

ApplicationPower项目生成脚手架设计源码:该项目基于Java开发,包含284个文件,主要使用Java和Shell语言。ApplicationPower是一个快速的项目生成脚手架,旨在帮助开发者快速搭建项目框架,包括创建项目结构、配置文件、开发环境等,提高开发效率。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不