informer代码下载
时间: 2023-11-30 19:00:15 浏览: 153
informer代码是一个用于预测时间序列数据的开源软件包,它可以用于大规模的时间序列预测任务,如天气预测、股票预测、交通流量预测等。要下载informer代码,可以通过以下步骤进行:
首先,打开你的浏览器并访问GitHub的informer代码仓库。在搜索栏中输入“informer”,然后点击搜索按钮。
接着,找到informer代码仓库的链接并点击进入。在页面右侧可以看到一个绿色的按钮,上面有“Code”字样,点击它会弹出一个下拉菜单。
然后,选择“Download ZIP”选项,这样就会将整个informer代码仓库以ZIP压缩包的形式下载到你的本地设备中。
下载完成后,解压ZIP文件,并在本地找到解压后的informer代码文件夹。
最后,你就可以在本地对informer代码进行编辑、运行或者进行其他操作了。
希望以上步骤可以帮助你成功下载informer代码,如果有任何问题,可以随时在GitHub上查找相关的文档或者向informer代码的开发者寻求帮助。祝你顺利使用informer代码!
相关问题
informer源码
“informer”是一个开源项目,它旨在帮助开发人员监控和管理应用程序中的事件和状态变化。这个项目的源码包含了一些关键的功能,让我们来看一下。
首先,源码中包含了一些核心组件,如事件监听器和状态管理器。事件监听器可以帮助开发人员监控应用程序中的各种事件,比如用户交互、数据更新等。而状态管理器则可以帮助开发人员管理应用程序中的状态变化,确保应用程序状态的一致性和可靠性。
除了这些核心组件,源码中还包含了一些示例代码和文档,帮助开发人员了解如何在他们的应用程序中使用“informer”。这些示例代码和文档可以帮助开发人员更好地理解“informer”的工作原理,以及如何进行定制化的配置和扩展。
此外,源码中还包含了一些单元测试和集成测试,确保“informer”的稳定性和可靠性。这些测试可以帮助开发人员及早发现和解决潜在的问题,提高应用程序的质量和可靠性。
总的来说,“informer”项目的源码提供了一些核心组件、示例代码和文档,以及测试保证了“informer”的稳定性和可靠性。开发人员可以通过阅读源码和示例来学习如何在他们的应用程序中使用“informer”,并通过测试确保应用程序的质量和可靠性。
informer代码
Informer是一种基于Transformer的序列模型,主要用于时间序列预测任务。其最大的特点是引入了全局和局部注意力机制,使得模型更加准确和稳定。以下是Informer的PyTorch实现代码示例:
```python
import torch
import torch.nn as nn
import numpy as np
class InformerEncoderLayer(nn.Module):
def __init__(self, embed_dim, num_heads, dim_feedforward, dropout_rate=0.0):
super(InformerEncoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate)
self.linear1 = nn.Linear(embed_dim, dim_feedforward)
self.dropout = nn.Dropout(dropout_rate)
self.linear2 = nn.Linear(dim_feedforward, embed_dim)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout_rate)
self.dropout2 = nn.Dropout(dropout_rate)
def forward(self, x):
# self-attention
res, _ = self.self_attn(x, x, x)
x = x + self.dropout1(res)
x = self.norm1(x)
# feedforward
res = self.linear2(self.dropout(torch.relu(self.linear1(x))))
x = x + self.dropout2(res)
x = self.norm2(x)
return x
class InformerEncoder(nn.Module):
def __init__(self, input_size, input_dim, embed_dim, num_heads, num_layers):
super(InformerEncoder, self).__init__()
self.input_fc = nn.Linear(input_size * input_dim, embed_dim)
self.pos_encoding = nn.Parameter(torch.zeros(1, input_size, embed_dim))
self.layers = nn.ModuleList([InformerEncoderLayer(embed_dim, num_heads, dim_feedforward=2048) for _ in range(num_layers)])
def forward(self, x):
# flatten input
x = x.reshape(x.shape[0], -1)
# input projection
x = self.input_fc(x)
# add position encoding
x = x.unsqueeze(1) + self.pos_encoding
# pass through encoder layers
for layer in self.layers:
x = layer(x)
return x
class InformerDecoderLayer(nn.Module):
def __init__(self, embed_dim, num_heads, dim_feedforward, dropout_rate=0.0):
super(InformerDecoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate)
self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate)
self.linear1 = nn.Linear(embed_dim, dim_feedforward)
self.dropout = nn.Dropout(dropout_rate)
self.linear2 = nn.Linear(dim_feedforward, embed_dim)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
self.norm3 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout_rate)
self.dropout2 = nn.Dropout(dropout_rate)
self.dropout3 = nn.Dropout(dropout_rate)
def forward(self, x, encoder_out):
# self-attention
res, _ = self.self_attn(x, x, x)
x = x + self.dropout1(res)
x = self.norm1(x)
# encoder-decoder attention
res, _ = self.multihead_attn(x, encoder_out, encoder_out)
x = x + self.dropout2(res)
x = self.norm2(x)
# feedforward
res = self.linear2(self.dropout(torch.relu(self.linear1(x))))
x = x + self.dropout3(res)
x = self.norm3(x)
return x
class InformerDecoder(nn.Module):
def __init__(self, output_size, output_dim, embed_dim, num_heads, num_layers):
super(InformerDecoder, self).__init__()
self.output_fc = nn.Linear(output_dim, embed_dim)
self.pos_encoding = nn.Parameter(torch.zeros(1, output_size, embed_dim))
self.layers = nn.ModuleList([InformerDecoderLayer(embed_dim, num_heads, dim_feedforward=2048) for _ in range(num_layers)])
self.output_proj = nn.Linear(embed_dim, output_dim)
def forward(self, x, encoder_out):
# output projection
x = self.output_fc(x)
# add position encoding
x = x.unsqueeze(1) + self.pos_encoding
# pass through decoder layers
for layer in self.layers:
x = layer(x, encoder_out)
# output projection
x = self.output_proj(x)
return x
class Informer(nn.Module):
def __init__(self, input_size, input_dim, output_size, output_dim, embed_dim=64, num_heads=4, enc_layers=2, dec_layers=1):
super(Informer, self).__init__()
self.encoder = InformerEncoder(input_size, input_dim, embed_dim, num_heads, enc_layers)
self.decoder = InformerDecoder(output_size, output_dim, embed_dim, num_heads, dec_layers)
def forward(self, x):
encoder_out = self.encoder(x[:, :-1])
decoder_out = self.decoder(x[:, -1], encoder_out)
return decoder_out
# example usage
model = Informer(input_size=24, input_dim=1, output_size=24, output_dim=1)
x = torch.randn(16, 25, 1)
y = model(x)
print(y.shape)
```
阅读全文