informer代码注释
时间: 2023-08-05 16:01:18 浏览: 151
informer代码注释是指在编写程序时,在程序中添加注释来解释和说明代码的作用、功能或使用方式等。这些注释不会对程序的运行产生任何影响,只是为了方便程序员之间的交流和沟通,以及更好地维护和理解代码。
在编写informer代码时,注释可以分为单行注释和多行注释两种形式。单行注释通常以"//"开头,多行注释以"/*"开头,以"*/"结尾。
在informer代码中,注释的位置应该尽可能靠近被注释对象的代码,以便于理解。注释内容应该简洁明了,注意使用简单易懂的语言,避免使用含糊不清或者晦涩难懂的词汇。
注释应该包括以下几个方面的内容:
1. 对整个代码块的功能进行总结和描述,解释代码的主要作用和目的;
2. 对变量、函数或类的定义进行解释,说明其用途和取值范围;
3. 对关键步骤或者算法的实现原理进行解释,帮助理解代码的逻辑;
4. 对一些特殊处理或者注意事项进行说明,以避免出现错误或者不必要的疑惑;
5. 如果代码存在一些难以理解的部分,可以通过注释进行详细的说明和解释。
注释是良好编程习惯的一部分,能够节省调试时间,提高代码的可读性和可维护性。编写informer代码时,良好的注释习惯是非常重要的,可以帮助他人更好地理解和使用你的代码。
相关问题
informer代码
Informer是一种基于Transformer的序列模型,主要用于时间序列预测任务。其最大的特点是引入了全局和局部注意力机制,使得模型更加准确和稳定。以下是Informer的PyTorch实现代码示例:
```python
import torch
import torch.nn as nn
import numpy as np
class InformerEncoderLayer(nn.Module):
def __init__(self, embed_dim, num_heads, dim_feedforward, dropout_rate=0.0):
super(InformerEncoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate)
self.linear1 = nn.Linear(embed_dim, dim_feedforward)
self.dropout = nn.Dropout(dropout_rate)
self.linear2 = nn.Linear(dim_feedforward, embed_dim)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout_rate)
self.dropout2 = nn.Dropout(dropout_rate)
def forward(self, x):
# self-attention
res, _ = self.self_attn(x, x, x)
x = x + self.dropout1(res)
x = self.norm1(x)
# feedforward
res = self.linear2(self.dropout(torch.relu(self.linear1(x))))
x = x + self.dropout2(res)
x = self.norm2(x)
return x
class InformerEncoder(nn.Module):
def __init__(self, input_size, input_dim, embed_dim, num_heads, num_layers):
super(InformerEncoder, self).__init__()
self.input_fc = nn.Linear(input_size * input_dim, embed_dim)
self.pos_encoding = nn.Parameter(torch.zeros(1, input_size, embed_dim))
self.layers = nn.ModuleList([InformerEncoderLayer(embed_dim, num_heads, dim_feedforward=2048) for _ in range(num_layers)])
def forward(self, x):
# flatten input
x = x.reshape(x.shape[0], -1)
# input projection
x = self.input_fc(x)
# add position encoding
x = x.unsqueeze(1) + self.pos_encoding
# pass through encoder layers
for layer in self.layers:
x = layer(x)
return x
class InformerDecoderLayer(nn.Module):
def __init__(self, embed_dim, num_heads, dim_feedforward, dropout_rate=0.0):
super(InformerDecoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate)
self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate)
self.linear1 = nn.Linear(embed_dim, dim_feedforward)
self.dropout = nn.Dropout(dropout_rate)
self.linear2 = nn.Linear(dim_feedforward, embed_dim)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
self.norm3 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout_rate)
self.dropout2 = nn.Dropout(dropout_rate)
self.dropout3 = nn.Dropout(dropout_rate)
def forward(self, x, encoder_out):
# self-attention
res, _ = self.self_attn(x, x, x)
x = x + self.dropout1(res)
x = self.norm1(x)
# encoder-decoder attention
res, _ = self.multihead_attn(x, encoder_out, encoder_out)
x = x + self.dropout2(res)
x = self.norm2(x)
# feedforward
res = self.linear2(self.dropout(torch.relu(self.linear1(x))))
x = x + self.dropout3(res)
x = self.norm3(x)
return x
class InformerDecoder(nn.Module):
def __init__(self, output_size, output_dim, embed_dim, num_heads, num_layers):
super(InformerDecoder, self).__init__()
self.output_fc = nn.Linear(output_dim, embed_dim)
self.pos_encoding = nn.Parameter(torch.zeros(1, output_size, embed_dim))
self.layers = nn.ModuleList([InformerDecoderLayer(embed_dim, num_heads, dim_feedforward=2048) for _ in range(num_layers)])
self.output_proj = nn.Linear(embed_dim, output_dim)
def forward(self, x, encoder_out):
# output projection
x = self.output_fc(x)
# add position encoding
x = x.unsqueeze(1) + self.pos_encoding
# pass through decoder layers
for layer in self.layers:
x = layer(x, encoder_out)
# output projection
x = self.output_proj(x)
return x
class Informer(nn.Module):
def __init__(self, input_size, input_dim, output_size, output_dim, embed_dim=64, num_heads=4, enc_layers=2, dec_layers=1):
super(Informer, self).__init__()
self.encoder = InformerEncoder(input_size, input_dim, embed_dim, num_heads, enc_layers)
self.decoder = InformerDecoder(output_size, output_dim, embed_dim, num_heads, dec_layers)
def forward(self, x):
encoder_out = self.encoder(x[:, :-1])
decoder_out = self.decoder(x[:, -1], encoder_out)
return decoder_out
# example usage
model = Informer(input_size=24, input_dim=1, output_size=24, output_dim=1)
x = torch.randn(16, 25, 1)
y = model(x)
print(y.shape)
```
informer代码实现
Informer模型的代码实现主要包括以下几个方面:
1. 数据准备:Informer模型需要将时序数据作为输入。数据的准备包括将数据转换为Informer模型所需的格式,并构建dataloader和dataset。这些代码主要负责数据的读取和处理。
2. 编码器和解码器:Informer模型的核心部分是编码器和解码器。编码器负责将输入的时序数据进行编码,解码器负责将编码后的数据解码为预测结果。编码器的实现中,最具创新性的是稀疏注意力机制和蒸馏操作,这些代码实现过程比较复杂。
3. 时间戳编码和数据编码:Informer模型还采用了时间戳编码和数据编码的方式来对输入数据进行编码。这些代码实现了时间戳编码、数据编码和绝对位置编码的统一embedding。
总结起来,Informer模型的代码实现涵盖了数据准备、编码器和解码器的实现以及时间戳编码和数据编码的统一embedding。这些代码实现过程相对复杂,需要详细分析模型的论文和官方代码来理解和复现。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [CGAN—LSGAN的原理与实现与informer代码理解(1)](https://blog.csdn.net/weixin_44790306/article/details/124434860)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)