informer代码
时间: 2023-11-28 12:06:38 浏览: 102
Informer是一种基于Transformer的序列模型,主要用于时间序列预测任务。其最大的特点是引入了全局和局部注意力机制,使得模型更加准确和稳定。以下是Informer的PyTorch实现代码示例:
```python
import torch
import torch.nn as nn
import numpy as np
class InformerEncoderLayer(nn.Module):
def __init__(self, embed_dim, num_heads, dim_feedforward, dropout_rate=0.0):
super(InformerEncoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate)
self.linear1 = nn.Linear(embed_dim, dim_feedforward)
self.dropout = nn.Dropout(dropout_rate)
self.linear2 = nn.Linear(dim_feedforward, embed_dim)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout_rate)
self.dropout2 = nn.Dropout(dropout_rate)
def forward(self, x):
# self-attention
res, _ = self.self_attn(x, x, x)
x = x + self.dropout1(res)
x = self.norm1(x)
# feedforward
res = self.linear2(self.dropout(torch.relu(self.linear1(x))))
x = x + self.dropout2(res)
x = self.norm2(x)
return x
class InformerEncoder(nn.Module):
def __init__(self, input_size, input_dim, embed_dim, num_heads, num_layers):
super(InformerEncoder, self).__init__()
self.input_fc = nn.Linear(input_size * input_dim, embed_dim)
self.pos_encoding = nn.Parameter(torch.zeros(1, input_size, embed_dim))
self.layers = nn.ModuleList([InformerEncoderLayer(embed_dim, num_heads, dim_feedforward=2048) for _ in range(num_layers)])
def forward(self, x):
# flatten input
x = x.reshape(x.shape[0], -1)
# input projection
x = self.input_fc(x)
# add position encoding
x = x.unsqueeze(1) + self.pos_encoding
# pass through encoder layers
for layer in self.layers:
x = layer(x)
return x
class InformerDecoderLayer(nn.Module):
def __init__(self, embed_dim, num_heads, dim_feedforward, dropout_rate=0.0):
super(InformerDecoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate)
self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout_rate)
self.linear1 = nn.Linear(embed_dim, dim_feedforward)
self.dropout = nn.Dropout(dropout_rate)
self.linear2 = nn.Linear(dim_feedforward, embed_dim)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
self.norm3 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout_rate)
self.dropout2 = nn.Dropout(dropout_rate)
self.dropout3 = nn.Dropout(dropout_rate)
def forward(self, x, encoder_out):
# self-attention
res, _ = self.self_attn(x, x, x)
x = x + self.dropout1(res)
x = self.norm1(x)
# encoder-decoder attention
res, _ = self.multihead_attn(x, encoder_out, encoder_out)
x = x + self.dropout2(res)
x = self.norm2(x)
# feedforward
res = self.linear2(self.dropout(torch.relu(self.linear1(x))))
x = x + self.dropout3(res)
x = self.norm3(x)
return x
class InformerDecoder(nn.Module):
def __init__(self, output_size, output_dim, embed_dim, num_heads, num_layers):
super(InformerDecoder, self).__init__()
self.output_fc = nn.Linear(output_dim, embed_dim)
self.pos_encoding = nn.Parameter(torch.zeros(1, output_size, embed_dim))
self.layers = nn.ModuleList([InformerDecoderLayer(embed_dim, num_heads, dim_feedforward=2048) for _ in range(num_layers)])
self.output_proj = nn.Linear(embed_dim, output_dim)
def forward(self, x, encoder_out):
# output projection
x = self.output_fc(x)
# add position encoding
x = x.unsqueeze(1) + self.pos_encoding
# pass through decoder layers
for layer in self.layers:
x = layer(x, encoder_out)
# output projection
x = self.output_proj(x)
return x
class Informer(nn.Module):
def __init__(self, input_size, input_dim, output_size, output_dim, embed_dim=64, num_heads=4, enc_layers=2, dec_layers=1):
super(Informer, self).__init__()
self.encoder = InformerEncoder(input_size, input_dim, embed_dim, num_heads, enc_layers)
self.decoder = InformerDecoder(output_size, output_dim, embed_dim, num_heads, dec_layers)
def forward(self, x):
encoder_out = self.encoder(x[:, :-1])
decoder_out = self.decoder(x[:, -1], encoder_out)
return decoder_out
# example usage
model = Informer(input_size=24, input_dim=1, output_size=24, output_dim=1)
x = torch.randn(16, 25, 1)
y = model(x)
print(y.shape)
```
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)