帮我实现一个informer的结构
时间: 2023-05-22 07:00:50 浏览: 83
informer时间序列预测
好的,以下是一个简单的 Informer 结构的实现代码:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
class InpConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
super(InpConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding)
self.norm = nn.LayerNorm(out_channels)
def forward(self, x):
x = self.conv(x)
x = self.norm(x)
x = F.relu(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, d_model, n_heads, dim_feedforward=2048, dropout=0.1):
super(EncoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
self.norm1 = nn.LayerNorm(d_model)
self.feed_forward = nn.Sequential(
nn.Linear(d_model, dim_feedforward),
nn.ReLU(),
nn.Linear(dim_feedforward, d_model),
nn.Dropout(dropout)
)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
attn_out, _ = self.self_attn(x, x, x)
x = x + self.dropout(attn_out)
x = self.norm1(x)
ff_out = self.feed_forward(x)
x = x + self.dropout(ff_out)
x = self.norm2(x)
return x
class InpEmbedding(nn.Module):
def __init__(self, d_model, img_size, patch_size):
super(InpEmbedding, self).__init__()
self.img_size = img_size
self.patch_size = patch_size
self.n_patches = (img_size // patch_size) ** 2
self.patch_embedding = nn.Conv2d(3, d_model, kernel_size=patch_size, stride=patch_size)
self.pos_embedding = nn.Parameter(torch.zeros(1, self.n_patches + 1, d_model))
def forward(self, x):
x = self.patch_embedding(x)
x = x.flatten(2).transpose(1, 2)
x = torch.cat([self.pos_embedding.repeat(x.shape[0], 1, 1), x], dim=1)
return x
class InpEncoder(nn.Module):
def __init__(self, d_model, n_heads, dim_feedforward, dropout, img_size, patch_size, n_layers):
super(InpEncoder, self).__init__()
self.embedding = InpEmbedding(d_model, img_size, patch_size)
self.layers = nn.ModuleList([EncoderLayer(d_model, n_heads, dim_feedforward, dropout) for _ in range(n_layers)])
def forward(self, x):
x = self.embedding(x)
for layer in self.layers:
x = layer(x)
return x
class InpPooler(nn.Module):
def __init__(self, d_model):
super(InpPooler, self).__init__()
self.fc = nn.Linear(d_model, d_model)
def forward(self, x):
x = x[:, 0]
x = self.fc(x)
x = F.tanh(x)
return x
class InpClassificationHead(nn.Module):
def __init__(self, d_model, n_classes):
super(InpClassificationHead, self).__init__()
self.fc = nn.Linear(d_model, n_classes)
def forward(self, x):
x = self.fc(x)
return x
class InpTransformer(nn.Module):
def __init__(self, d_model=768, n_heads=12, dim_feedforward=2048, dropout=0.1, img_size=224, patch_size=16, n_layers=12, n_classes=1000):
super(InpTransformer, self).__init__()
self.encoder = InpEncoder(d_model, n_heads, dim_feedforward, dropout, img_size, patch_size, n_layers)
self.pooler = InpPooler(d_model)
self.classification_head = InpClassificationHead(d_model, n_classes)
def forward(self, x):
x = self.encoder(x)
x = self.pooler(x)
x = self.classification_head(x)
return x
```
这是一个简单的 InpConv + Transformer 的结构,用于图像分类任务。其中 InpConv 用于对输入图像进行卷积和归一化,InpEmbedding 用于将图像转换为嵌入向量,InpEncoder 用于对嵌入向量进行编码,InpPooler 用于对编码后的向量进行池化,InpClassificationHead 用于对池化后的向量进行分类。
阅读全文