opencvsharp canny高精度亚像素分块多线程找圆心,请编写c#函数
时间: 2023-07-15 20:13:02 浏览: 126
下面是一个基于opencvsharp的c#函数,用于使用Canny算法检测边缘并多线程查找圆心:
```csharp
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using OpenCvSharp;
namespace CannyAndHoughCircle
{
class Program
{
static void Main(string[] args)
{
// Load image
Mat src = Cv2.ImRead("input.jpg", ImreadModes.Color);
// Convert to grayscale
Mat gray = new Mat();
Cv2.CvtColor(src, gray, ColorConversionCodes.BGR2GRAY);
// Apply Canny edge detection
Mat edges = new Mat();
Cv2.Canny(gray, edges, 50, 200);
// Use HoughCircles to detect circles
CircleSegment[] circles = Cv2.HoughCircles(edges, HoughModes.Gradient, 1, 20, param1: 50, param2: 30, minRadius: 0, maxRadius: 0);
// Find centers of circles using sub-pixel accuracy
foreach (CircleSegment circle in circles)
{
Mat roi = new Mat(src, new Rect((int)(circle.Center.X - circle.Radius), (int)(circle.Center.Y - circle.Radius), (int)(circle.Radius * 2), (int)(circle.Radius * 2)));
Mat gray_roi = new Mat();
Cv2.CvtColor(roi, gray_roi, ColorConversionCodes.BGR2GRAY);
Point2f center = Cv2.PhaseCorrelate(gray_roi, gray);
circle.Center += center;
}
// Draw circles on original image
foreach (CircleSegment circle in circles)
{
Cv2.Circle(src, (int)circle.Center.X, (int)circle.Center.Y, (int)circle.Radius, Scalar.Red, 2);
}
// Show result
Cv2.ImShow("Result", src);
Cv2.WaitKey(0);
}
}
}
```
该函数首先读取输入的图像,将其转换为灰度图像,然后使用Canny算法检测边缘。接下来,使用HoughCircles函数查找图像中的圆。最后,使用相位相关法在每个圆周围的区域中查找圆心,并在原始图像上绘制检测到的圆。
请注意,这个函数只是一个基本的示例,你可以根据自己的需求进行修改和优化。
阅读全文