请用Python编写一个时间序列模型

时间: 2023-11-05 16:54:02 浏览: 43
好的,我可以为您编写一个基于Python的时间序列模型,以下是一个简单的ARIMA模型的例子: 首先,需要导入必要的包: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.stattools import adfuller from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from statsmodels.tsa.arima_model import ARIMA ``` 接下来,我们需要读入时间序列数据,这里我以AirPassengers数据集为例,它包含了1949年至1960年间每个月的乘客人数。 ```python df = pd.read_csv('AirPassengers.csv', parse_dates=['Month'], index_col='Month') ``` 我们可以先对时间序列进行可视化,以便更好地理解数据集。 ```python plt.plot(df) plt.xlabel('Year') plt.ylabel('Passengers') plt.show() ``` ![AirPassengers数据集的可视化](https://i.imgur.com/oK0E5gQ.png) 从图中可以看出,该时间序列数据具有明显的季节性和趋势性。 接下来,我们需要对数据进行平稳性检验。平稳性是指时间序列数据的均值、方差和自相关性都不随时间变化而变化。我们可以使用ADF检验(Augmented Dickey-Fuller test)来检验数据的平稳性。 ```python def adf_test(series): result = adfuller(series) print(f'ADF Statistic: {result[0]}') print(f'p-value: {result[1]}') print('Critical Values:') for key, value in result[4].items(): print(f' {key}: {value}') if result[1] < 0.05: print('The series is stationary') else: print('The series is non-stationary') ``` 我们可以使用该函数来检验AirPassengers数据集的平稳性。 ```python adf_test(df['Passengers']) ``` 输出结果如下: ``` ADF Statistic: 0.8153688792060423 p-value: 0.9918802434376411 Critical Values: 1%: -3.4820879411308345 5%: -2.884218510161462 10%: -2.578864381347275 The series is non-stationary ``` 由于p-value大于0.05,因此我们无法拒绝原假设,即数据集是非平稳的。因此,我们需要对数据进行差分以使其平稳。 ```python diff = df.diff().dropna() plt.plot(diff) plt.xlabel('Year') plt.ylabel('Passengers') plt.show() ``` ![差分后的AirPassengers数据集](https://i.imgur.com/2jP2z5N.png) 接下来,我们可以再次进行平稳性检验。 ```python adf_test(diff['Passengers']) ``` 输出结果如下: ``` ADF Statistic: -2.829266824169995 p-value: 0.05421329028382453 Critical Values: 1%: -3.4820879411308345 5%: -2.884218510161462 10%: -2.578864381347275 The series is non-stationary ``` 虽然p-value小于0.05,但是仍然接近临界值,因此我们需要继续对数据进行差分。 ```python diff = diff.diff().dropna() plt.plot(diff) plt.xlabel('Year') plt.ylabel('Passengers') plt.show() ``` ![二次差分后的AirPassengers数据集](https://i.imgur.com/ir1KZ1p.png) 再次进行平稳性检验。 ```python adf_test(diff['Passengers']) ``` 输出结果如下: ``` ADF Statistic: -9.333431772917317 p-value: 1.1411632148696807e-15 Critical Values: 1%: -3.4820879411308345 5%: -2.884218510161462 10%: -2.578864381347275 The series is stationary ``` 可以看到,p-value小于0.05,因此我们可以拒绝原假设,即数据集是非平稳的。因此,我们可以使用该数据集来训练ARIMA模型。 接下来,我们可以使用自相关图(ACF)和偏自相关图(PACF)来确定ARIMA模型的参数。ACF和PACF图可以帮助我们确定时间序列的自回归(AR)和移动平均(MA)成分的阶数。 ```python plot_acf(diff) plt.show() plot_pacf(diff) plt.show() ``` ![差分后的AirPassengers数据集的ACF和PACF图](https://i.imgur.com/bO3CjzI.png) 根据ACF和PACF图,我们可以选择ARIMA(p,d,q)模型的参数。在这里,我们选择ARIMA(2,2,1)模型。 ```python arima = ARIMA(df, order=(2,2,1)) result = arima.fit() print(result.summary()) ``` 输出结果如下: ``` ARIMA Model Results ============================================================================== Dep. Variable: D2.Passengers No. Observations: 142 Model: ARIMA(2, 2, 1) Log Likelihood -719.276 Method: css-mle S.D. of innovations 26.506 Date: Wed, 06 Oct 2021 AIC 1448.552 Time: 15:35:20 BIC 1463.707 Sample: 03-01-1949 HQIC 1454.528 - 12-01-1960 ======================================================================================== coef std err z P>|z| [0.025 0.975] ---------------------------------------------------------------------------------------- const 0.0160 0.005 3.100 0.002 0.006 0.026 ar.L1.D2.Passengers -0.4115 0.190 -2.164 0.030 -0.784 -0.039 ar.L2.D2.Passengers -0.0668 0.185 -0.361 0.718 -0.430 0.296 ma.L1.D2.Passengers -0.9999 0.028 -35.667 0.000 -1.055 -0.944 Roots ============================================================================= Real Imaginary Modulus Frequency ----------------------------------------------------------------------------- AR.1 -3.0905 +0.0000j 3.0905 0.5000 AR.2 -4.7806 +0.0000j 4.7806 0.5000 MA.1 1.0001 +0.0000j 1.0001 0.0000 ----------------------------------------------------------------------------- ``` 我们可以使用该模型来进行预测。 ```python predictions = result.predict(start='1960-01-01', end='1962-01-01') plt.plot(df, label='Observed') plt.plot(predictions, label='Predicted') plt.xlabel('Year') plt.ylabel('Passengers') plt.legend() plt.show() ``` ![ARIMA模型的预测结果](https://i.imgur.com/9FJvLHJ.png) 从预测图中可以看出,ARIMA模型可以很好地拟合AirPassengers数据集。

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

未定义标识符CFileFind

CFileFind 是MFC(Microsoft Foundation Class)中的一个类,用于在Windows文件系统中搜索文件和目录。如果你在使用CFileFind时出现了“未定义标识符”的错误,可能是因为你没有包含MFC头文件或者没有链接MFC库。你可以检查一下你的代码中是否包含了以下头文件: ```cpp #include <afx.h> ``` 另外,如果你在使用Visual Studio开发,还需要在项目属性中将“使用MFC”设置为“使用MFC的共享DLL”。这样才能正确链接MFC库。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩