def change(a): a = np.array(a) a = torch.tensor(a) a = a.permute(1,0) a = np.array(a) return a什么意思
时间: 2024-04-07 14:31:47 浏览: 138
这段代码定义了一个名为change的函数,该函数有一个参数a。该函数首先将参数a转换为NumPy数组,然后将其转换为PyTorch张量(tensor)。接着,使用PyTorch的permute函数将张量a的维度重新排列为第一维度为1,第二维度为0。将重新排列的张量再次转换为NumPy数组,并将其返回。换句话说,该函数的目的是将传入的二维数组转置,并将其转换为PyTorch张量和NumPy数组格式。
相关问题
下面pytorch代码转化为paddlepaddle2.2.2代码: import torch import torch.distributions as tdist def random_noise_levels(): """Generates random noise levels from a log-log linear distribution.""" log_min_shot_noise = np.log(0.0001) log_max_shot_noise = np.log(0.012) log_shot_noise = torch.FloatTensor(1).uniform_(log_min_shot_noise, log_max_shot_noise) shot_noise = torch.exp(log_shot_noise) line = lambda x: 2.18 * x + 1.20 n = tdist.Normal(loc=torch.tensor([0.0]), scale=torch.tensor([0.26])) log_read_noise = line(log_shot_noise) + n.sample() read_noise = torch.exp(log_read_noise) return shot_noise, read_noise def add_noise(image, shot_noise=0.01, read_noise=0.0005): """Adds random shot (proportional to image) and read (independent) noise.""" image = image.permute(1, 2, 0) # Permute the image tensor to HxWxC format from CxHxW format variance = image * shot_noise + read_noise n = tdist.Normal(loc=torch.zeros_like(variance), scale=torch.sqrt(variance)) noise = n.sample() out = image + noise out = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format return out
以下是将该代码转化为PaddlePaddle2.2.2的代码:
```
import paddle
import paddle.distribution as pdist
import numpy as np
def random_noise_levels():
"""Generates random noise levels from a log-log linear distribution."""
log_min_shot_noise = np.log(0.0001)
log_max_shot_noise = np.log(0.012)
log_shot_noise = paddle.uniform(shape=[1], min=log_min_shot_noise, max=log_max_shot_noise)
shot_noise = paddle.exp(log_shot_noise)
line = lambda x: 2.18 * x + 1.20
n = pdist.Normal(loc=paddle.zeros([1]), scale=paddle.ones([1]) * 0.26)
log_read_noise = line(log_shot_noise) + n.sample()
read_noise = paddle.exp(log_read_noise)
return shot_noise, read_noise
def add_noise(image, shot_noise=0.01, read_noise=0.0005):
"""Adds random shot (proportional to image) and read (independent) noise."""
image = image.permute([1, 2, 0]) # Permute the image tensor to HxWxC format from CxHxW format
variance = image * shot_noise + read_noise
n = pdist.Normal(loc=paddle.zeros_like(variance), scale=paddle.sqrt(variance))
noise = n.sample()
out = image + noise
out = out.permute([2, 0, 1]) # Re-Permute the tensor back to CxHxW format
return out
```
请注意,PaddlePaddle的分布API(`paddle.distribution`)与PyTorch的分布API(`torch.distributions`)略有不同,需要相应地更改代码。此外,PaddlePaddle的张量API(如`paddle.exp`)与PyTorch的张量API(如`torch.exp`)也略有不同,需要相应地更改代码。
修改image1 = torch.from_numpy(np.ascontiguousarray(image1.astype(np.uint8))).permute(2, 0, 1).unsqueeze(0).to(device) image2 = torch.from_numpy(np.ascontiguousarray( image2.astype(np.uint8)).permute(2, 0, 1).unsqueeze(0).to(device) image3 = torch.from_numpy(np.ascontiguousarray(image3.astype(np.uint8))). permute(2, 0, 1).unsqueeze(0).to(device)报AttributeError: 'Tensor' object has no attribute 'astype'
这个错误是因为在将numpy数组转换为PyTorch张量时,您使用了一个Tensor对象而不是一个numpy数组。Tensor对象没有astype()方法,因此会出现这个错误。要解决这个问题,您需要确保您的输入是numpy数组,而不是Tensor对象。您可以使用.detach().cpu().numpy()方法将Tensor对象转换回numpy数组,或者在转换为张量之前确保您的输入是numpy数组。例如,您可以这样修改代码:
image1 = torch.from_numpy(np.ascontiguousarray(image1)).permute(2, 0, 1).unsqueeze(0).to(device)
image2 = torch.from_numpy(np.ascontiguousarray(image2)).permute(2, 0, 1).unsqueeze(0).to(device)
image3 = torch.from_numpy(np.ascontiguousarray(image3)).permute(2, 0, 1).unsqueeze(0).to(device)
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)