ros小车运动时红绿灯识别功能代码
时间: 2023-12-13 13:03:15 浏览: 194
红绿灯识别是一个比较复杂的功能,需要涉及到图像处理、机器学习等技术。以下是一个简单的基于ROS的红绿灯识别功能代码:
1. 安装必要的软件包
```
sudo apt-get install ros-kinetic-image-transport
sudo apt-get install ros-kinetic-cv-bridge
sudo apt-get install ros-kinetic-vision-opencv
```
2. 创建ROS节点
```
roscore
```
3. 订阅摄像头图像
```
rosrun image_transport republish compressed in:=/camera/image_raw raw out:=/camera/image_raw
```
4. 使用OpenCV进行图像处理
```python
#!/usr/bin/env python
import rospy
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image
import cv2
class TrafficLightDetector:
def __init__(self):
self.bridge = CvBridge()
self.image_sub = rospy.Subscriber('/camera/image_raw', Image, self.callback)
def callback(self, data):
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
# 在这里添加你的红绿灯识别代码
if __name__ == '__main__':
rospy.init_node('traffic_light_detector')
detector = TrafficLightDetector()
rospy.spin()
```
5. 添加红绿灯识别代码
```python
#!/usr/bin/env python
import rospy
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image
import cv2
class TrafficLightDetector:
def __init__(self):
self.bridge = CvBridge()
self.image_sub = rospy.Subscriber('/camera/image_raw', Image, self.callback)
def callback(self, data):
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
# 将图像转换为灰度图像
gray = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
# 将灰度图像进行二值化
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 找出所有的轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 遍历所有的轮廓
for cnt in contours:
# 计算轮廓的面积
area = cv2.contourArea(cnt)
# 如果面积小于一定值,则忽略该轮廓
if area < 1000:
continue
# 计算轮廓的周长
perimeter = cv2.arcLength(cnt, True)
# 使用近似多边形来拟合轮廓
approx = cv2.approxPolyDP(cnt, 0.03 * perimeter, True)
# 如果检测到4个点,则认为是红绿灯
if len(approx) == 4:
cv2.drawContours(cv_image, [approx], 0, (0, 255, 0), 2)
cv2.imshow("Traffic Light Detector", cv_image)
cv2.waitKey(1)
if __name__ == '__main__':
rospy.init_node('traffic_light_detector')
detector = TrafficLightDetector()
rospy.spin()
```
6. 运行ROS节点
```
rosrun <package_name> <node_name>
```
其中 `<package_name>` 是你的ROS包的名称,`<node_name>` 是你的ROS节点的名称。
参考资料:
- [ROS OpenCV Tutorial - Traffic Light Detector](https://github.com/ros-perception/opencv_tutorials/blob/master/traffic_light_detector/scripts/traffic_light_detector.py)
阅读全文