SE+aspp+resnet+unet代码
时间: 2023-06-28 18:14:48 浏览: 753
以下是SE-ASPP-ResNet-UNet模型的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
class ASPP(nn.Module):
def __init__(self, in_channels, out_channels=256):
super(ASPP, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 1)
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, padding=6, dilation=6)
self.conv3 = nn.Conv2d(in_channels, out_channels, 3, padding=12, dilation=12)
self.conv4 = nn.Conv2d(in_channels, out_channels, 3, padding=18, dilation=18)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv2d(in_channels + 4 * out_channels, out_channels, 1)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU()
def forward(self, x):
feat1 = self.conv1(x)
feat2 = self.conv2(x)
feat3 = self.conv3(x)
feat4 = self.conv4(x)
feat5 = self.avg_pool(x)
feat5 = F.upsample_bilinear(feat5, size=feat4.size()[2:])
x = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class SEASPPResNet(nn.Module):
def __init__(self):
super(SEASPPResNet, self).__init__()
self.resnet = nn.Sequential(
nn.Conv2d(3, 64, 7, stride=2, padding=3),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(3, stride=2, padding=1),
nn.Conv2d(64, 64, 1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, 3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 256, 1),
SELayer(256),
)
self.aspp = ASPP(256, 256)
def forward(self, x):
x = self.resnet(x)
x = self.aspp(x)
return x
class UNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(UNet, self).__init__()
self.down1 = nn.Sequential(
nn.Conv2d(in_channels, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
)
self.down2 = nn.Sequential(
nn.MaxPool2d(2),
nn.Conv2d(64, 128, 3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(128, 128, 3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
)
self.down3 = nn.Sequential(
nn.MaxPool2d(2),
nn.Conv2d(128, 256, 3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(256, 256, 3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
)
self.down4 = nn.Sequential(
nn.MaxPool2d(2),
nn.Conv2d(256, 512, 3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Conv2d(512, 512, 3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
)
self.up1 = nn.Sequential(
nn.ConvTranspose2d(512, 256, 2, stride=2),
nn.Conv2d(512, 256, 3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(256, 256, 3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
)
self.up2 = nn.Sequential(
nn.ConvTranspose2d(256, 128, 2, stride=2),
nn.Conv2d(256, 128, 3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(128, 128, 3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
)
self.up3 = nn.Sequential(
nn.ConvTranspose2d(128, 64, 2, stride=2),
nn.Conv2d(128, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
)
self.up4 = nn.Sequential(
nn.ConvTranspose2d(64, 32, 2, stride=2),
nn.Conv2d(64, 32, 3, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.Conv2d(32, 32, 3, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
)
self.out = nn.Conv2d(32, out_channels, 1)
def forward(self, x):
x1 = self.down1(x)
x2 = self.down2(x1)
x3 = self.down3(x2)
x4 = self.down4(x3)
x = self.up1(x4)
x = torch.cat([x, x3], dim=1)
x = self.up2(x)
x = torch.cat([x, x2], dim=1)
x = self.up3(x)
x = torch.cat([x, x1], dim=1)
x = self.up4(x)
x = self.out(x)
return x
class SEASPPResNetUNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(SEASPPResNetUNet, self).__init__()
self.se_aspp_resnet = SEASPPResNet()
self.unet = UNet(256, out_channels)
def forward(self, x):
x = self.se_aspp_resnet(x)
x = self.unet(x)
return x
```
这是一个使用PyTorch实现的SE-ASPP-ResNet-UNet模型,其中包含SELayer、ASPP、SEASPPResNet、UNet和SEASPPResNetUNet五个类。模型的输入是一个RGB图像,输出是一个大小为out_channels的向量,表示图像属于每个类别的概率。
阅读全文