【实验项目1】 1.学习并调用RandomForestClassifier处理预测问题,并尝试用于真实数据集,并提供完整的python代码; 2.学习并调用RandomForestRegressor处理预测问题,并尝试用于真实数据集,并提供完整的python代码; 【实验项目2】 1.学习并调用ExtraTreesClassifier处理预测问题,并尝试用于真实数据集,并提供完整的python代码。 2.学习并调用ExtraTreesRegressor处理预测问题,并尝试用于真实数据集,并提供完整的python代码。
时间: 2023-12-03 12:43:10 浏览: 105
【实验项目1】
1. 使用RandomForestClassifier进行分类
```python
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
# 加载鸢尾花数据集
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)
# 构建随机森林分类器
rfc = RandomForestClassifier(n_estimators=100, random_state=42)
rfc.fit(X_train, y_train)
# 预测测试集
y_pred = rfc.predict(X_test)
# 计算准确率
accuracy = (y_pred == y_test).sum() / len(y_test)
print("Accuracy:", accuracy)
```
2. 使用RandomForestRegressor进行回归
```python
from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 加载波士顿房价数据集
boston = load_boston()
X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size=0.2, random_state=42)
# 构建随机森林回归器
rfr = RandomForestRegressor(n_estimators=100, random_state=42)
rfr.fit(X_train, y_train)
# 预测测试集
y_pred = rfr.predict(X_test)
# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("MSE:", mse)
```
【实验项目2】
1. 使用ExtraTreesClassifier进行分类
```python
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
# 加载鸢尾花数据集
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)
# 构建ExtraTrees分类器
etc = ExtraTreesClassifier(n_estimators=100, random_state=42)
etc.fit(X_train, y_train)
# 预测测试集
y_pred = etc.predict(X_test)
# 计算准确率
accuracy = (y_pred == y_test).sum() / len(y_test)
print("Accuracy:", accuracy)
```
2. 使用ExtraTreesRegressor进行回归
```python
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 加载波士顿房价数据集
boston = load_boston()
X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size=0.2, random_state=42)
# 构建ExtraTrees回归器
etr = ExtraTreesRegressor(n_estimators=100, random_state=42)
etr.fit(X_train, y_train)
# 预测测试集
y_pred = etr.predict(X_test)
# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("MSE:", mse)
```
阅读全文