【实验项目1】 1.学习并调用RandomForestClassifier处理预测问题,并尝试用于真实数据集(不选择boston波士顿房价数据集),并提供完整的python代码,可适当可视化; 2.学习并调用RandomForestRegressor处理预测问题,并尝试用于真实数据集(不选择boston波士顿房价数据集),并提供完整的python代码,可适当可视化;
时间: 2023-12-03 11:43:19 浏览: 172
好的,我可以帮你完成这个任务。在这里,我将使用sklearn库中的RandomForestClassifier和RandomForestRegressor来处理分类和回归问题。我们将使用iris数据集来进行分类任务,使用wine数据集来进行回归任务。
首先,让我们导入所需的库并加载数据集:
```python
from sklearn.datasets import load_iris, load_wine
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, mean_squared_error
import matplotlib.pyplot as plt
# 加载iris数据集(分类)
iris = load_iris()
X_iris, y_iris = iris.data, iris.target
# 加载wine数据集(回归)
wine = load_wine()
X_wine, y_wine = wine.data, wine.target
```
接下来,我们将数据集分成训练集和测试集,并使用RandomForestClassifier和RandomForestRegressor模型进行分类和回归:
```python
# 分割iris数据集
X_train_iris, X_test_iris, y_train_iris, y_test_iris = train_test_split(X_iris, y_iris, test_size=0.3, random_state=42)
# 分割wine数据集
X_train_wine, X_test_wine, y_train_wine, y_test_wine = train_test_split(X_wine, y_wine, test_size=0.3, random_state=42)
# 训练RandomForestClassifier模型
clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X_train_iris, y_train_iris)
# 进行预测并计算准确率
y_pred_iris = clf.predict(X_test_iris)
acc_iris = accuracy_score(y_test_iris, y_pred_iris)
print('Accuracy of RandomForestClassifier on iris dataset:', acc_iris)
# 训练RandomForestRegressor模型
reg = RandomForestRegressor(n_estimators=100, random_state=42)
reg.fit(X_train_wine, y_train_wine)
# 进行预测并计算均方误差
y_pred_wine = reg.predict(X_test_wine)
mse_wine = mean_squared_error(y_test_wine, y_pred_wine)
print('Mean squared error of RandomForestRegressor on wine dataset:', mse_wine)
```
最后,我们可以使用Matplotlib库进行可视化,以更好地理解模型的表现:
```python
# 可视化RandomForestClassifier的特征重要性
plt.bar(range(len(clf.feature_importances_)), clf.feature_importances_)
plt.xticks(range(len(iris.feature_names)), iris.feature_names, rotation=90)
plt.title('Feature importances of RandomForestClassifier on iris dataset')
plt.show()
# 可视化RandomForestRegressor的特征重要性
plt.bar(range(len(reg.feature_importances_)), reg.feature_importances_)
plt.xticks(range(len(wine.feature_names)), wine.feature_names, rotation=90)
plt.title('Feature importances of RandomForestRegressor on wine dataset')
plt.show()
```
完整的代码如下所示:
阅读全文