解释这行代码fig3 = plt.figure() for k in range(K): plt.semilogx(2*np.pi/fs*omega[:,k], np.arange(1,omega.shape[0]+1), linestyles[k]) fig3.suptitle('Evolution of center frequencies omega')

时间: 2023-05-28 11:08:00 浏览: 87
这行代码的作用是创建一个名为fig3的图像对象,并在其上绘制每个中心频率ω的演化曲线。具体来说,它使用for循环遍历每个中心频率,并使用plt.semilogx()函数将其表示为横坐标为2π/ fs *ω,纵坐标为1到ω.shape [0] 1的线条。linestyles [k]参数指定每个线条的样式。最后,使用fig3.suptitle()函数为整个图像添加标题:“Evolution of center frequencies omega”。
相关问题

nrlmsise00模型计算气体数密度随压强变化的数据的代码

由于代码比较长,我将其分为多个部分进行展示: 第一部分:定义常数和子函数 ``` import numpy as np # 地球半径 R = 6356.766 # km # 所需常数 g0 = 9.80665 # m/s^2 M = 28.9644e-3 # kg/mol R_gas = 8.31432 # N·m/(mol·K) gamma = 1.4 S = 110.4 # K beta = 1.458e-6 # kg/(m·s·K^1/2) S1 = 120 # K beta1 = 1.523e-5 # kg/(m·s·K^1/2) # 子函数 def zeta(z): return np.sqrt(1 - 0.0065 * z / S) def Z(z): return (1 - 0.0065 * z / S) ** 5.2561 def alpha(z): return -0.0065 / S / zeta(z) def T(z): return S + alpha(z) * R * Z(z) / (gamma - 1) def P(z): return 101325 * (1 - 0.0065 * z / S) ** 5.2561 def rho(z): return P(z) * M / (R_gas * T(z)) def H(z): return R * T(z) / g0 * 1e3 # m ``` 第二部分:定义主函数 ``` def nrlmsise00(z_km, lon_deg, lat_deg, doy, sec): """ 计算 NRLMSISE-00 模型下的大气参数 :param z_km: float, 高度,单位 km :param lon_deg: float, 经度,单位 deg :param lat_deg: float, 纬度,单位 deg :param doy: int, 年积日 :param sec: float, 秒数 :return: dict, 包含大气参数的字典 """ alt_km = z_km * 1e3 / R # km -> 地球半径单位 # 年积日转化为日/年 d = doy + sec / 86400 if (d % 1 == 0.5): d = (d - 0.5) / 365.25 else: d = (d - 1) / 365.25 # 经纬度转化为地心坐标系下的地球表面坐标 lat = np.deg2rad(lat_deg) lon = np.deg2rad(lon_deg) r = np.sqrt(R ** 2 / (1 - 0.00669437999013 * np.sin(lat) ** 2)) x = (r + z_km * 1e3) * np.cos(lat) * np.cos(lon) y = (r + z_km * 1e3) * np.cos(lat) * np.sin(lon) z = (r * (1 - 0.00669437999013) + z_km * 1e3) * np.sin(lat) # 计算 NRLMSISE-00 所需的输入参数 ap = np.zeros(7) + 4 # 磁活动指数 ap[6] = 999 # F10.7,使用默认值 flags = np.zeros(24) + 1 # 所有标志位都设置为 1 if alt_km > 85: flags[0] = -1 # 不计算 O2 和 N2 的密度 else: flags[0] = 0 if alt_km > 500: flags[1] = -1 # 不计算 H 和 He 的密度 else: flags[1] = 0 # 执行 NRLMSISE-00 模型 output = gtd7.density(d, x, y, z, f107a=150, f107=150, ap=ap, flags=flags) # 计算输出结果 result = {} result['alt_km'] = z_km result['lon_deg'] = lon_deg result['lat_deg'] = lat_deg result['doy'] = doy result['sec'] = sec result['n'] = output.total result['nO'] = output.components[0] result['nO2'] = output.components[1] result['nN2'] = output.components[2] result['nHe'] = output.components[3] result['nAr'] = output.components[4] result['nH'] = output.components[6] result['nO_anomalous'] = output.components[7] return result ``` 第三部分:计算气体数密度随压强变化的数据 ``` # 计算高度为 400 km 的大气参数 result = nrlmsise00(z_km=400, lon_deg=0, lat_deg=0, doy=1, sec=0) # 计算气体数密度随压强变化的数据 P_range = np.logspace(-10, 5, num=1000) n_range = np.array([result['n'] * np.exp(-P / result['n'] / 1.381e-23 / result['T']) for P in P_range]) # 绘制图像 import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.semilogx(P_range, n_range) ax.set_xlabel('Pressure (Pa)') ax.set_ylabel('Number density (m$^{-3}$)') ax.set_title('Number density as a function of pressure at 400 km altitude') plt.show() ```

复杂 python实现音乐可视化代码

好的,下面是一个更复杂的Python实现音乐可视化的代码示例: ```python import pyaudio import numpy as np import struct import matplotlib.pyplot as plt # 音频采集参数 CHUNK = 1024*4 # 一次读取的音频数据的大小 FORMAT = pyaudio.paInt16 # 音频数据的格式 CHANNELS = 1 # 音频通道数 RATE = 44100 # 音频采样率 # 创建音频输入流 p = pyaudio.PyAudio() stream = p.open( format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK ) # 创建matplotlib图形界面 fig, (ax1, ax2) = plt.subplots(2, figsize=(15, 7)) # 创建x轴数据 x = np.arange(0, 2 * CHUNK, 2) # 创建y轴数据 line, = ax1.plot(x, np.random.rand(CHUNK), '-', lw=2) ax1.set_title('时域波形') # 创建频谱图 line_fft, = ax2.semilogx( np.linspace(20, RATE/2, CHUNK//2), np.random.rand(CHUNK//2), '-', lw=2 ) ax2.set_xlim(20, RATE/2) ax2.set_ylim(0, 1) ax2.set_title('频域波形') # 循环读取音频数据并更新图形界面 while True: data = stream.read(CHUNK, exception_on_overflow=False) data_int = np.array(struct.unpack(str(CHUNK) + 'h', data), dtype='h') data_np = data_int / 32768.0 # 更新时域波形 line.set_ydata(data_np) ax1.set_yticks([np.min(data_np), np.max(data_np)]) fig.canvas.draw() # 计算快速傅里叶变换 fft = np.fft.fft(data_int) fft_norm = np.abs(fft) / (CHUNK * 32768.0) # 更新频谱图 line_fft.set_ydata(fft_norm[:CHUNK//2]) fig.canvas.draw() plt.pause(0.01) ``` 这个示例同样使用PyAudio库获取计算机麦克风输入的音频数据,但是使用了更复杂的音频处理算法,并将音频数据可视化为时域波形和频域波形两个图形。 在`main`函数中,我们首先创建PyAudio对象`p`,然后打开音频输入流`stream`。接着,我们创建一个matplotlib的Figure对象,包含两个Axes对象,一个用于显示时域波形,一个用于显示频域波形。然后,我们分别生成x轴数据和y轴数据,并使用`ax1.plot`和`ax2.semilogx`创建折线图。接着,我们循环读取音频数据,并进行快速傅里叶变换,将音频数据分别更新时域波形和频域波形两个图形,并使用`plt.pause`暂停程序执行一段时间,以保证图形界面的流畅度。 这是一个更复杂的示例,使用了更多的音频处理算法和更丰富的图形界面,实现了更高效、更美观的音频可视化。

相关推荐

最新推荐

recommend-type

解决python中显示图片的plt.imshow plt.show()内存泄漏问题

2. **使用`clf()`或`clear()`**:在显示下一张图片前,可以调用`plt.clf()`(clear figure)或`plt.gca().cla()`(clear current axis)来清除当前轴上的所有内容,这样也能防止内存累积。 ```python for image in ...
recommend-type

长春人文学院在河北2021-2024各专业最低录取分数及位次表.pdf

全国各大学在河北2021-2024年各专业最低录取分数及录取位次数据,高考志愿必备参考数据
recommend-type

C++标准程序库:权威指南

"《C++标准程式库》是一本关于C++标准程式库的经典书籍,由Nicolai M. Josuttis撰写,并由侯捷和孟岩翻译。这本书是C++程序员的自学教材和参考工具,详细介绍了C++ Standard Library的各种组件和功能。" 在C++编程中,标准程式库(C++ Standard Library)是一个至关重要的部分,它提供了一系列预先定义的类和函数,使开发者能够高效地编写代码。C++标准程式库包含了大量模板类和函数,如容器(containers)、迭代器(iterators)、算法(algorithms)和函数对象(function objects),以及I/O流(I/O streams)和异常处理等。 1. 容器(Containers): - 标准模板库中的容器包括向量(vector)、列表(list)、映射(map)、集合(set)、无序映射(unordered_map)和无序集合(unordered_set)等。这些容器提供了动态存储数据的能力,并且提供了多种操作,如插入、删除、查找和遍历元素。 2. 迭代器(Iterators): - 迭代器是访问容器内元素的一种抽象接口,类似于指针,但具有更丰富的操作。它们可以用来遍历容器的元素,进行读写操作,或者调用算法。 3. 算法(Algorithms): - C++标准程式库提供了一组强大的算法,如排序(sort)、查找(find)、复制(copy)、合并(merge)等,可以应用于各种容器,极大地提高了代码的可重用性和效率。 4. 函数对象(Function Objects): - 又称为仿函数(functors),它们是具有operator()方法的对象,可以用作函数调用。函数对象常用于算法中,例如比较操作或转换操作。 5. I/O流(I/O Streams): - 标准程式库提供了输入/输出流的类,如iostream,允许程序与标准输入/输出设备(如键盘和显示器)以及其他文件进行交互。例如,cin和cout分别用于从标准输入读取和向标准输出写入。 6. 异常处理(Exception Handling): - C++支持异常处理机制,通过throw和catch关键字,可以在遇到错误时抛出异常,然后在适当的地方捕获并处理异常,保证了程序的健壮性。 7. 其他组件: - 还包括智能指针(smart pointers)、内存管理(memory management)、数值计算(numerical computations)和本地化(localization)等功能。 《C++标准程式库》这本书详细讲解了这些内容,并提供了丰富的实例和注解,帮助读者深入理解并熟练使用C++标准程式库。无论是初学者还是经验丰富的开发者,都能从中受益匪浅,提升对C++编程的掌握程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

怎样使scanf函数和printf在同一行表示

在C语言中,`scanf` 和 `printf` 通常是分开使用的,因为它们的功能不同,一个负责从标准输入读取数据,另一个负责向标准输出显示信息。然而,如果你想要在一行代码中完成读取和打印,可以创建一个临时变量存储 `scanf` 的结果,并立即传递给 `printf`。但这种做法并不常见,因为它违反了代码的清晰性和可读性原则。 下面是一个简单的示例,展示了如何在一个表达式中使用 `scanf` 和 `printf`,但这并不是推荐的做法: ```c #include <stdio.h> int main() { int num; printf("请输入一个整数: ");
recommend-type

Java解惑:奇数判断误区与改进方法

Java是一种广泛使用的高级编程语言,以其面向对象的设计理念和平台无关性著称。在本文档中,主要关注的是Java中的基础知识和解惑,特别是关于Java编程语言的一些核心概念和陷阱。 首先,文档提到的“表达式谜题”涉及到Java中的取余运算符(%)。在Java中,取余运算符用于计算两个数相除的余数。例如,`i % 2` 表达式用于检查一个整数`i`是否为奇数。然而,这里的误导在于,Java对`%`操作符的处理方式并不像常规数学那样,对于负数的奇偶性判断存在问题。由于Java的`%`操作符返回的是与左操作数符号相同的余数,当`i`为负奇数时,`i % 2`会得到-1而非1,导致`isOdd`方法错误地返回`false`。 为解决这个问题,文档建议修改`isOdd`方法,使其正确处理负数情况,如这样: ```java public static boolean isOdd(int i) { return i % 2 != 0; // 将1替换为0,改变比较条件 } ``` 或者使用位操作符AND(&)来实现,因为`i & 1`在二进制表示中,如果`i`的最后一位是1,则结果为非零,表明`i`是奇数: ```java public static boolean isOdd(int i) { return (i & 1) != 0; // 使用位操作符更简洁 } ``` 这些例子强调了在编写Java代码时,尤其是在处理数学运算和边界条件时,理解运算符的底层行为至关重要,尤其是在性能关键场景下,选择正确的算法和操作符能避免潜在的问题。 此外,文档还提到了另一个谜题,暗示了开发者在遇到类似问题时需要进行细致的测试,确保代码在各种输入情况下都能正确工作,包括负数、零和正数。这不仅有助于发现潜在的bug,也能提高代码的健壮性和可靠性。 这个文档旨在帮助Java学习者和开发者理解Java语言的一些基本特性,特别是关于取余运算符的行为和如何处理边缘情况,以及在性能敏感的场景下优化算法选择。通过解决这些问题,读者可以更好地掌握Java编程,并避免常见误区。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

The Application of Autocorrelation Function in Economics: Economic Cycle Analysis and Forecasting Modeling

# Application of Autocorrelation Function in Economics: Analysis and Forecasting Models for Economic Cycles ## 1. Theoretical Foundations of Autocorrelation Function The Autocorrelation Function (ACF) is a statistical tool used to measure the correlation between data points in time series data tha
recommend-type

ethernet functionality not enabled socket error#10065 No route to host.

When you encounter an Ethernet functionality not enabled error with a socket error code 10065 "No route to host" while attempting to send or receive data over a network, it typically indicates two issues: 1. **Ethernet Functionality Not Enabled**: This error might be related to your system's networ