torch.nn.functional.conv2d输出尺寸的计算
时间: 2023-03-20 18:02:14 浏览: 311
torch.nn.functional.conv2d函数的输出尺寸可以通过以下公式进行计算:
output_size = [(input_size - kernel_size + 2 * padding) / stride] + 1
其中,input_size是输入张量的尺寸,kernel_size是卷积核的尺寸,padding是填充的大小,stride是步长。
如果输入张量的尺寸为(N,C,H,W),卷积核的尺寸为(C_out,C_in,KH,KW),填充的大小为padding,步长为stride,那么输出张量的尺寸为(N,C_out,H_out,W_out),其中:
H_out = [(H + 2 * padding - KH) / stride] + 1
W_out = [(W + 2 * padding - KW) / stride] + 1
希望这可以帮助你理解torch.nn.functional.conv2d输出尺寸的计算。
相关问题
逐字解释下列代码:class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) self.conv2 = torch.nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.conv3 = torch.nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = torch.nn.Linear(64 * 4 * 4, 256) self.fc2 = torch.nn.Linear(256, 15) def forward(self, x): x = torch.nn.functional.relu(self.conv1(x)) x = self.pool(x) x = torch.nn.functional.relu(self.conv2(x)) x = self.pool(x) x = torch.nn.functional.relu(self.conv3(x)) x = self.pool(x) x = x.view(-1, 64 * 4 * 4) x = torch.nn.functional.relu(self.fc1(x)) x = self.fc2(x) return x net = Net()
这段代码定义了一个名为Net的类,继承自torch.nn.Module类。该类有两个方法:__init__和forward。
__init__方法是Net类的构造函数,它调用了torch.nn.Module类的构造函数,并定义了六个网络层:三个卷积层(Conv2d)和两个全连接层(Linear),以及一个最大池化层(MaxPool2d)。其中,卷积层的输入通道数为3,输出通道数分别为16、32和64;卷积核大小为3x3;步长为1;填充大小为1。最大池化层的池化核大小为2x2,步长为2。第一个全连接层的输入大小为64x4x4,输出大小为256。第二个全连接层的输入大小为256,输出大小为15。
forward方法定义了前向传播的过程,即输入一个数据x,通过卷积、池化和全连接等操作得到输出结果。在具体实现中,输入数据先经过一个卷积层,接着进行最大池化,再经过另外两个卷积层和最大池化,最后将得到的特征图展开成一维向量,输入到两个全连接层中。输出结果为一个15维的向量。
最后,通过net = Net()创建了一个Net类的实例。
torch.nn.functional.conv2d
torch.nn.functional.conv2d是一个函数,用于执行二维卷积操作。它接受输入张量、滤波器、偏置项、步幅、填充、扩张和分组参数,并返回卷积后的输出张量。
以一个示例为例,如果我们有一个输入张量inputs和一个滤波器filters,我们可以使用torch.nn.functional.conv2d来执行二维卷积运算。假设我们有以下输入和滤波器张量:
```
inputs = torch.arange(1, 21).reshape(1, 2, 2, 5)
filters = torch.arange(1, 7).reshape(2, 1, 1, 3)
```
我们可以通过以下代码调用torch.nn.functional.conv2d来执行卷积运算:
```
res = F.conv2d(input=inputs, weight=filters, stride=(1, 1), groups=2)
```
在上述示例中,我们指定了输入、权重(滤波器)、步幅和分组参数,然后调用函数conv2d来执行卷积运算。最后,我们可以打印出卷积后的输出结果res:
```
print(res)
```
输出将是一个张量,包含卷积运算后的结果。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
阅读全文