把上面的代码改为三层卷积层
时间: 2024-03-10 16:19:57 浏览: 57
CNN.tar.gz_CNN_CNN 识别_MLP 层_cnn c++实现_xml 参数
好的,下面是将代码改为三层卷积层的示例代码:
```python
import torch.nn as nn
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
self.fc = nn.Linear(64 * 7 * 7, 10)
def forward(self, x):
x = nn.functional.relu(self.conv1(x))
x = nn.functional.max_pool2d(x, kernel_size=2)
x = nn.functional.relu(self.conv2(x))
x = nn.functional.max_pool2d(x, kernel_size=2)
x = nn.functional.relu(self.conv3(x))
x = nn.functional.max_pool2d(x, kernel_size=2)
x = x.view(-1, 64 * 7 * 7)
x = self.fc(x)
return x
```
这里我们增加了三个卷积层,每个卷积层都有一个ReLU激活函数和一个2x2的最大池化层。最后我们将输出展平成一维向量,并通过一个全连接层进行分类。
阅读全文