mtcnn代码实现

时间: 2023-08-11 20:06:44 浏览: 220
MTCNN(Multi-task Cascaded Convolutional Networks)是一种用于人脸检测的深度神经网络。MTCNN使用了一个三级级联的CNN进行人脸检测。以下是MTCNN的代码实现。 首先,需要导入必要的库和模型: ```python import cv2 import numpy as np from keras.models import load_model PNet = load_model('PNet.h5') RNet = load_model('RNet.h5') ONet = load_model('ONet.h5') ``` 接下来,定义一个函数来进行人脸检测: ```python def detect_faces(image): img = image.copy() img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) height, width = img.shape[:2] # 图像预处理 img_resized = cv2.resize(img, (int(width/2), int(height/2))) img_resized = (img_resized - 127.5) / 128.0 img_resized = np.expand_dims(img_resized, axis=0) # PNet 预测 threshold = 0.7 scale_factor = 0.709 scales = [] bounding_boxes = [] while min(img_resized.shape[:2]) > 12: scales.append(np.array([img_resized.shape[1]/width, img_resized.shape[0]/height])) output = PNet.predict(img_resized) cls_prob = output[0][:,:,1] bbox_pred = output[1] indices = np.where(cls_prob > threshold) indices = np.stack(indices, axis=1) if indices.shape[0] == 0: img_resized = cv2.resize(img_resized, (int(img_resized.shape[1]*scale_factor), int(img_resized.shape[0]*scale_factor))) continue for index in indices: xmin = index[1] * 2 ymin = index[0] * 2 xmax = index[1] * 2 + 12 ymax = index[0] * 2 + 12 score = cls_prob[index[0], index[1]] offset = bbox_pred[index[0], index[1]] bounding_boxes.append([xmin, ymin, xmax, ymax, score, offset]) img_resized = cv2.resize(img_resized, (int(img_resized.shape[1]*scale_factor), int(img_resized.shape[0]*scale_factor))) # NMS 处理 bounding_boxes = np.array(bounding_boxes) keep = nms(bounding_boxes[:, :5], 0.5) bounding_boxes = bounding_boxes[keep] # RNet 预测 threshold = 0.7 scales = [] for b in bounding_boxes: w = b[2] - b[0] h = b[3] - b[1] size = max(w, h) img_sub = img[b[1]:b[3], b[0]:b[2]] img_resized = cv2.resize(img_sub, (24, 24)) img_resized = (img_resized - 127.5) / 128.0 img_resized = np.expand_dims(img_resized, axis=0) scales.append(size/24) output = RNet.predict(img_resized) cls_prob = output[0][:,1] bbox_pred = output[1] if cls_prob > threshold: score = cls_prob offset = bbox_pred xmin = int(b[0] + offset[0]*w) ymin = int(b[1] + offset[1]*h) xmax = int(b[2] + offset[2]*w) ymax = int(b[3] + offset[3]*h) bounding_boxes.append([xmin, ymin, xmax, ymax, score]) # NMS 处理 bounding_boxes = np.array(bounding_boxes) keep = nms(bounding_boxes[:, :5], 0.7, 'iom') bounding_boxes = bounding_boxes[keep] # ONet 预测 threshold = 0.7 faces = [] for b in bounding_boxes: w = b[2] - b[0] h = b[3] - b[1] size = max(w, h) img_sub = img[b[1]:b[3], b[0]:b[2]] img_resized = cv2.resize(img_sub, (48, 48)) img_resized = (img_resized - 127.5) / 128.0 img_resized = np.expand_dims(img_resized, axis=0) output = ONet.predict(img_resized) cls_prob = output[0][:,1] bbox_pred = output[1] landmark_pred = output[2] if cls_prob > threshold: score = cls_prob offset = bbox_pred landmark = landmark_pred xmin = int(b[0] + offset[0]*w) ymin = int(b[1] + offset[1]*h) xmax = int(b[2] + offset[2]*w) ymax = int(b[3] + offset[3]*h) x1 = xmin + landmark[0]*w y1 = ymin + landmark[1]*h x2 = xmin + landmark[2]*w y2 = ymin + landmark[3]*h x3 = xmin + landmark[4]*w y3 = ymin + landmark[5]*h x4 = xmin + landmark[6]*w y4 = ymin + landmark[7]*h faces.append([xmin, ymin, xmax, ymax, score, x1, y1, x2, y2, x3, y3, x4, y4]) return faces ``` 其中,nms函数实现了非极大值抑制: ```python def nms(dets, thresh, method='union'): x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h if method == 'union': ovr = inter / (areas[i] + areas[order[1:]] - inter) elif method == 'min': ovr = inter / np.minimum(areas[i], areas[order[1:]]) else: print('Unknown nms method!') inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep ``` 最后,可以使用以下代码来进行人脸检测: ```python image = cv2.imread('test.jpg') faces = detect_faces(image) for face in faces: xmin, ymin, xmax, ymax = face[:4] cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2) for i in range(5, 13, 2): x, y = int(face[i]), int(face[i+1]) cv2.circle(image, (x, y), 2, (0, 0, 255), -1) cv2.imshow('image', image) cv2.waitKey(0) cv2.destroyAllWindows() ```
阅读全文

相关推荐

最新推荐

recommend-type

基于MTCNN/TensorFlow实现人脸检测

代码示例中,`detect_face`模块包含了MTCNN的实现,通过`detect_face.detect_face()`函数对图像进行人脸检测。`minsize`参数定义了人脸检测的最小尺寸,`threshold`是一系列阈值用于不同阶段的网络,`factor`是缩放...
recommend-type

Python+OpenCV实现实时眼动追踪的示例代码

3. 在检测到的面部区域内,使用专门的眼睛检测模型(例如基于模板匹配、机器学习算法或深度学习模型,如MTCNN或SSD)来找到左眼和右眼的位置。 4. 对于每只眼睛,可能还会执行进一步的处理,如眼球中心的估计,或者...
recommend-type

使用卷积神经网络(CNN)做人脸识别的示例代码

OpenCV库提供了多种人脸检测方法,如Haar级联分类器和基于深度学习的MTCNN。本文中,我们假设已经完成了人脸检测,并获得了人脸区域的坐标和尺寸。 接下来,我们使用这些裁剪出的人脸图像来训练CNN模型。训练过程...
recommend-type

AIMP2 .NET 互操作插件

AIMP2 .NET 互操作插件允许使用托管代码(C#、VB 等)为 AIMP2 编写插件。
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依