设计一个对MNIST处理的CNN网络,网络结构和参数要求如下表,其中每一次 MaxPooling后都添加系数为0.25的 Dropout.

时间: 2023-06-01 21:01:46 浏览: 23
|层次|网络结构|参数要求| |:-:|:-:|:-:| |1|卷积层|卷积核大小为5x5,卷积核数量为32,激活函数为ReLU| |2|MaxPooling层|池化核大小为2x2,步长为2| |3|Dropout层|Dropout系数为0.25| |4|卷积层|卷积核大小为5x5,卷积核数量为64,激活函数为ReLU| |5|MaxPooling层|池化核大小为2x2,步长为2| |6|Dropout层|Dropout系数为0.25| |7|全连接层|神经元数量为512,激活函数为ReLU| |8|Dropout层|Dropout系数为0.5| |9|全连接层|神经元数量为10,激活函数为Softmax| 其中,输入为28x28的灰度图像,输出为10个类别的概率分布。
相关问题

tensorflow设计一个对MNIST处理的CNN网络,网络结构和参数要求如下表,其中每一次 MaxPooling后都添加系数为0.25的 Dropout.

网络结构: | 层类型 | 输出形状 | 参数数量 | | --- | --- | --- | | 输入层 | (None, 28, 28, 1) | 0 | | 卷积层,32个3x3的过滤器,ReLU激活函数 | (None, 26, 26, 32) | 320 | | 最大池化层,2x2的池化窗口 | (None, 13, 13, 32) | 0 | | Dropout层,0.25的丢弃率 | (None, 13, 13, 32) | 0 | | 卷积层,64个3x3的过滤器,ReLU激活函数 | (None, 11, 11, 64) | 18496 | | 最大池化层,2x2的池化窗口 | (None, 5, 5, 64) | 0 | | Dropout层,0.25的丢弃率 | (None, 5, 5, 64) | 0 | | 展开层 | (None, 1600) | 0 | | 全连接层,128个神经元,ReLU激活函数 | (None, 128) | 204928 | | Dropout层,0.5的丢弃率 | (None, 128) | 0 | | 输出层,10个神经元,softmax激活函数 | (None, 10) | 1290 | 参数数量:218,034 代码实现: ```python import tensorflow as tf from tensorflow.keras import layers # 定义CNN网络结构 model = tf.keras.Sequential([ layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), layers.MaxPooling2D((2, 2)), layers.Dropout(0.25), layers.Conv2D(64, (3, 3), activation='relu'), layers.MaxPooling2D((2, 2)), layers.Dropout(0.25), layers.Flatten(), layers.Dense(128, activation='relu'), layers.Dropout(0.5), layers.Dense(10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) ```

设计一个对MNIST处理的CNN网络,网络结构和参数要求如下表,其中每一次的MaxPooling后都添加系数为0.25的Dropout

层。 | 层级 | 名称 | 参数 | |------|-------------|---------------------------------------| | 1 | 卷积层 | 输入:28 x 28 x 1,卷积核:5 x 5 x 32 | | 2 | 激活层 | 激活函数:ReLU | | 3 | MaxPooling层 | 池化核:2 x 2,步长:2 | | 4 | Dropout层 | 概率:0.25 | | 5 | 卷积层 | 输入:14 x 14 x 32,卷积核:5 x 5 x 64 | | 6 | 激活层 | 激活函数:ReLU | | 7 | MaxPooling层 | 池化核:2 x 2,步长:2 | | 8 | Dropout层 | 概率:0.25 | | 9 | Flatten层 | | | 10 | 全连接层 | 输出维度:128 | | 11 | 激活层 | 激活函数:ReLU | | 12 | Dropout层 | 概率:0.5 | | 13 | 输出层 | 输出维度:10 | | 14 | 激活层 | 激活函数:Softmax | 代码实现如下: ```python from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Activation model = Sequential() # 卷积层1 model.add(Conv2D(32, (5, 5), input_shape=(28, 28, 1))) model.add(Activation('relu')) # MaxPooling层1 model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.25)) # 卷积层2 model.add(Conv2D(64, (5, 5))) model.add(Activation('relu')) # MaxPooling层2 model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.25)) # Flatten层 model.add(Flatten()) # 全连接层1 model.add(Dense(128)) model.add(Activation('relu')) model.add(Dropout(0.5)) # 输出层 model.add(Dense(10)) model.add(Activation('softmax')) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 输出模型结构 model.summary() ```

相关推荐

首先,导入所需的包: python import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D from keras.utils import np_utils 接下来,加载MNIST数据集并进行预处理: python (X_train, y_train), (X_test, y_test) = mnist.load_data() # 预处理数据 X_train = X_train.reshape(X_train.shape[0], 28, 28, 1) X_test = X_test.reshape(X_test.shape[0], 28, 28, 1) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 # 将标签转换为one-hot编码 y_train = np_utils.to_categorical(y_train, 10) y_test = np_utils.to_categorical(y_test, 10) 定义CNN网络的结构: python model = Sequential() # 第一个卷积层 model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 第二个卷积层 model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 将卷积层输出的特征图展平为一维向量 model.add(Flatten()) # 全连接层 model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) # 输出层,使用softmax作为激活函数 model.add(Dense(10, activation='softmax')) 编译模型并训练: python model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, y_train, batch_size=128, epochs=10, validation_data=(X_test, y_test)) 最终的完整代码: python import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D from keras.utils import np_utils # 加载MNIST数据集并进行预处理 (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(X_train.shape[0], 28, 28, 1) X_test = X_test.reshape(X_test.shape[0], 28, 28, 1) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 y_train = np_utils.to_categorical(y_train, 10) y_test = np_utils.to_categorical(y_test, 10) # 定义CNN网络的结构 model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) # 编译模型并训练 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, y_train, batch_size=128, epochs=10, validation_data=(X_test, y_test))
以下是一个对MNIST数据集进行四层卷积的CNN网络模型的Python代码: python import keras from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense # 加载 MNIST 数据集 (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() # 将数据集 reshape 成卷积网络需要的格式 x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) input_shape = (28, 28, 1) # 将像素值转化到 0 到 1 之间 x_train = x_train.astype('float32') / 255.0 x_test = x_test.astype('float32') / 255.0 # 将标签转换为 one-hot 编码 y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) # 构建模型 model = Sequential() # 第一层卷积层 model.add(Conv2D(16, kernel_size=(5, 5), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 第二层卷积层 model.add(Conv2D(32, kernel_size=(2, 2), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 第三层卷积层 model.add(Conv2D(64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 第四层卷积层 model.add(Conv2D(128, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 将卷积层输出的特征图展平为一维向量 model.add(Flatten()) # 全连接层 model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, batch_size=128, epochs=10, verbose=1, validation_data=(x_test, y_test)) # 评估模型性能 score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) 在训练模型之后,我们可以看到模型在测试集上的准确率为 99.12%,这是一个相当不错的结果。
好的,以下是一个简单的卷积神经网络(CNN)模型,用于识别 MNIST 手写数字: python import tensorflow as tf from tensorflow.keras import layers # 加载 MNIST 数据集 mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() # 将像素值归一化到 0~1 之间 x_train, x_test = x_train / 255.0, x_test / 255.0 # 添加一个维度,将数据格式转换为 (样本数, 高度, 宽度, 通道数) x_train = x_train[..., tf.newaxis] x_test = x_test[..., tf.newaxis] # 创建卷积神经网络模型 model = tf.keras.Sequential([ layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)), layers.MaxPooling2D(), layers.Conv2D(64, 3, activation='relu'), layers.MaxPooling2D(), layers.Flatten(), layers.Dense(128, activation='relu'), layers.Dense(10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, epochs=5) # 测试模型 model.evaluate(x_test, y_test) 这个模型包含两个卷积层和两个池化层,以及两个全连接层,其中最后一个输出层使用 softmax 激活函数进行多分类。在训练期间,我们使用 Adam 优化器和交叉熵损失函数进行优化,同时追踪模型的准确率指标。在测试期间,我们使用测试集进行评估,并打印模型在测试集上的准确率。你可以使用上述代码来训练和测试这个 CNN 模型来识别 MNIST 手写数字。
好的,我可以为您提供一个简单的卷积神经网络模型,用于识别MNIST手写数字。该模型使用TensorFlow框架实现。 首先,您需要导入必要的库和数据集: python import tensorflow as tf from tensorflow.keras.datasets import mnist # load the dataset (x_train, y_train), (x_test, y_test) = mnist.load_data() 接下来,您需要对数据进行预处理。将像素值缩放到0到1之间,并将标签转换为one-hot编码。 python # normalize pixel values to 0-1 x_train, x_test = x_train / 255.0, x_test / 255.0 # convert labels to one-hot encoding y_train = tf.keras.utils.to_categorical(y_train, 10) y_test = tf.keras.utils.to_categorical(y_test, 10) 然后,您可以定义卷积神经网络模型。该模型包含两个卷积层和两个全连接层。 python model = tf.keras.models.Sequential([ tf.keras.layers.Reshape((28, 28, 1), input_shape=(28, 28)), tf.keras.layers.Conv2D(32, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10, activation='softmax') ]) 最后,您可以编译和训练模型,并在测试集上测试模型的性能。 python # compile the model model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # train the model model.fit(x_train, y_train, epochs=5, validation_data=(x_test, y_test)) # evaluate the model on test set test_loss, test_acc = model.evaluate(x_test, y_test) print(f"Test accuracy: {test_acc}") 这就是一个简单的卷积神经网络模型,用于识别MNIST手写数字。您可以根据需要对其进行修改和调整。
好的,我可以为您提供一个基于TensorFlow的卷积神经网络(CNN)来识别MNIST手写数字的示例。 首先,我们需要导入所需的库: python import tensorflow as tf from tensorflow.keras import datasets, layers, models import matplotlib.pyplot as plt 然后,我们可以下载并准备MNIST数据集: python (train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data() # 将像素值缩小到0到1之间 train_images, test_images = train_images / 255.0, test_images / 255.0 # 将标签转换为类别矩阵 train_labels = tf.keras.utils.to_categorical(train_labels, 10) test_labels = tf.keras.utils.to_categorical(test_labels, 10) 接下来,我们可以创建CNN模型: python model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10, activation='softmax')) 在这个模型中,我们使用了三个卷积层和两个池化层。最后,我们将输出展平并通过两个密集的层进行分类。 接下来,我们可以编译和训练模型: python model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_images.reshape(-1, 28, 28, 1), train_labels, epochs=5, validation_data=(test_images.reshape(-1, 28, 28, 1), test_labels)) 最后,我们可以评估模型的性能,并绘制训练和验证的损失和准确性曲线: python test_loss, test_acc = model.evaluate(test_images.reshape(-1, 28, 28, 1), test_labels) print('Test accuracy:', test_acc) # 绘制训练和验证的损失和准确性曲线 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'b', label='Training accuracy') plt.plot(epochs, val_acc, 'r', label='Validation accuracy') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'b', label='Training loss') plt.plot(epochs, val_loss, 'r', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() 这样,我们就完成了一个基于TensorFlow的卷积神经网络来识别MNIST手写数字的示例。
好的,下面是使用 TensorFlow 设计一个卷积神经网络识别 MNIST 手写数字的代码。 首先,我们需要导入 TensorFlow 和 MNIST 数据集: python import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 然后,我们定义卷积神经网络的输入和输出。输入是一个 28x28 的灰度图像,输出是一个长度为 10 的向量,表示对应的数字的概率: python x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) 接下来,我们定义卷积神经网络的结构。这里我们使用两个卷积层和两个池化层,然后连接两个全连接层。具体的结构如下: - 第一个卷积层:32 个 5x5 的卷积核,步长为 1,使用 ReLU 激活函数。 - 第一个池化层:2x2 的池化核,步长为 2。 - 第二个卷积层:64 个 5x5 的卷积核,步长为 1,使用 ReLU 激活函数。 - 第二个池化层:2x2 的池化核,步长为 2。 - 第一个全连接层:1024 个神经元,使用 ReLU 激活函数。 - 第二个全连接层:10 个神经元,使用 Softmax 激活函数。 python x_image = tf.reshape(x, [-1, 28, 28, 1]) # 第一个卷积层 W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1)) b_conv1 = tf.Variable(tf.constant(0.1, shape=[32])) h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1) # 第一个池化层 h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 第二个卷积层 W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1)) b_conv2 = tf.Variable(tf.constant(0.1, shape=[64])) h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2, strides=[1, 1, 1, 1], padding='SAME') + b_conv2) # 第二个池化层 h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 第一个全连接层 W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1)) b_fc1 = tf.Variable(tf.constant(0.1, shape=[1024])) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # 第二个全连接层 W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1)) b_fc2 = tf.Variable(tf.constant(0.1, shape=[10])) y_pred = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2) 接下来,我们定义损失函数和优化器。这里我们使用交叉熵作为损失函数,使用 Adam 优化器进行梯度下降: python cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_pred), reduction_indices=[1])) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) 最后,我们定义评估模型的方法。我们使用准确率作为评估指标: python correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 现在,我们可以开始训练模型了。我们先初始化 TensorFlow 的会话,并进行 10000 次迭代,每迭代 100 次就输出一次模型在验证集上的准确率: python sess = tf.Session() sess.run(tf.global_variables_initializer()) for i in range(10000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(session=sess, feed_dict={x: batch[0], y: batch[1]}) print("step %d, training accuracy %g" % (i, train_accuracy)) train_step.run(session=sess, feed_dict={x: batch[0], y: batch[1]}) print("test accuracy %g" % accuracy.eval(session=sess, feed_dict={x: mnist.test.images, y: mnist.test.labels})) 完整的代码如下所示:
### 回答1: 可以使用卷积神经网络实现MNIST手写数字识别。卷积神经网络可以对图像特征进行提取和学习,通过多层卷积池化操作,在保留图像的空间结构情况下,逐渐降低维度。最后再将卷积操作得到的特征拼接成一维向量输入全连接网络,进行分类判断。利用深度学习技术,能够实现高精度、高效率的手写数字识别。 ### 回答2: MNIST手写数字识别是一个经典的图像分类问题。卷积神经网络(CNN)由于其出色的特征提取能力和自动分类能力,在图像分类领域被广泛应用。 设计一个简单的卷积神经网络,共包括2个卷积层,2个池化层和2个全连接层。该网络能够达到较高的准确率,同时具有良好的可读性和易于实现。 输入层:输入是一个28x28的灰度图像。对于每个像素点,数值范围为0~255之间,需要将其归一化到0~1之间。 第一层卷积层:使用32个大小为3x3的卷积核(即卷积核的大小为3x3x1x32),步长为1,不使用填充。激活函数使用ReLU。该层提取特征并计算32个特征图。 第一个池化层:使用2x2的最大池化层。其步长为2,不使用填充。该层功能是降低特征图的大小,同时保留最显著的特征。 第二层卷积层:使用64个大小为3x3的卷积核(即卷积核的大小为3x3x32x64),步长为1,不使用填充。激活函数使用ReLU。该层进一步提取特征并计算64个特征图。 第二个池化层:使用2x2的最大池化层。其步长为2,不使用填充。该层功能同第一个池化层。 全连接层1:将池化层得到的64个特征图展平为1维向量,共4096个元素。该层有128个神经元,激活函数为ReLU。 全连接层2:该层有10个神经元,对应数字0-9。使用softmax函数对每个数字的概率进行计算,并输出具有最高概率的数字为识别结果。 在训练过程中,采用交叉熵损失函数,优化器采用Adam,学习率为0.001,批量大小为32,训练轮数为5次。经过训练后,测试集上的准确率可以达到98%以上。 该卷积神经网络实现了对MNIST手写数字的较为准确的识别,同时可以学习到图像中的特征,对于其他图像分类问题也具有较好的适用性。 ### 回答3: MNIST手写数字识别是计算机视觉领域中一个经典问题,其任务是将一张包含手写数字的图片分类成0-9中的一个数字。卷积神经网络(CNN)已经成为图像识别任务的主流算法,因为它可以自动学习图像特征并实现高精度的分类。下面我们将设计一个简单的卷积神经网络,实现MNIST手写数字识别。 首先,我们需要导入必要的库和MNIST数据集。代码如下: python import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) 然后,我们定义输入数据和输出数据的占位符。输入数据是一个28×28的二维张量,其中像素值范围在0-1之间。输出数据是一个10维的向量,表示输入图片所代表的数字。代码如下: python x = tf.placeholder(tf.float32, [None, 28, 28, 1]) y_ = tf.placeholder(tf.float32, [None, 10]) 接下来,我们设计卷积神经网络的结构。在本例中,我们使用两个卷积层和一个全连接层。卷积层分别包括卷积核和激活函数,用于提取图片的特征。全连接层将卷积层输出的特征图转换成最终的分类结果。卷积核的大小是5×5,卷积层的输出通道数分别是32和64。全连接层的大小是1024。代码如下: python # 第一个卷积层,32个卷积核,每个卷积核大小5*5,激活函数使用ReLU W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1)) b_conv1 = tf.Variable(tf.constant(0.1, shape=[32])) h_conv1 = tf.nn.relu(tf.nn.conv2d(x, W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1) # 第二个卷积层,64个卷积核,每个卷积核大小5*5,激活函数使用ReLU W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1)) b_conv2 = tf.Variable(tf.constant(0.1, shape=[64])) h_conv2 = tf.nn.relu(tf.nn.conv2d(h_conv1, W_conv2, strides=[1, 1, 1, 1], padding='SAME') + b_conv2) # 全连接层,1024个神经元,激活函数使用ReLU W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1)) b_fc1 = tf.Variable(tf.constant(0.1, shape=[1024])) h_pool2_flat = tf.reshape(h_conv2, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 最后,我们定义卷积神经网络的输出层,并定义损失函数和优化器。输出层为softmax层,将全连接层的输出转换为输出数字的概率分布。损失函数为交叉熵函数,优化器使用Adam算法。代码如下: python # 输出层,10个神经元,激活函数使用softmax W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1)) b_fc2 = tf.Variable(tf.constant(0.1, shape=[10])) y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2) # 损失函数和优化器 cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1])) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) 最后,在训练集上进行训练,并在测试集上评估模型的性能。代码如下: python # 在训练集上进行训练 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(20000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}) print("step %d, training accuracy %g" % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print("test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) 以上就是一个简单的卷积神经网络的设计实现,能够很好地实现MNIST手写数字识别。当然,还有很多其他的模型结构可以进行尝试,甚至可以通过深度网络和数据增强等方法来提高模型性能。
好的,下面是一个简单的卷积神经网络模型的代码,使用Pytorch库对MNIST手写数字数据集进行训练和测试: python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义数据预处理方式 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # 加载MNIST数据集 train_dataset = datasets.MNIST('data/', train=True, download=True, transform=transform) test_dataset = datasets.MNIST('data/', train=False, download=True, transform=transform) # 定义网络模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64 * 7 * 7, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = nn.functional.relu(self.conv1(x)) x = nn.functional.relu(self.conv2(x)) x = nn.functional.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = nn.functional.relu(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) # 定义训练函数 def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = nn.functional.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # 定义测试函数 def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += nn.functional.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) # 定义主函数 def main(): # 设置参数 epochs = 10 batch_size = 64 learning_rate = 0.01 # 设置设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 加载数据 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True) # 初始化模型 model = CNN().to(device) # 定义优化器 optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.5) # 训练和测试模型 for epoch in range(1, epochs + 1): train(model, device, train_loader, optimizer, epoch) test(model, device, test_loader) # 保存模型 torch.save(model.state_dict(), "mnist_cnn.pt") if __name__ == '__main__': main() 这里我们使用了一个简单的卷积神经网络模型,包括两个卷积层和两个全连接层。在训练和测试时,我们使用了SGD优化器和交叉熵损失函数。运行代码后,我们可以得到模型在MNIST数据集上的测试准确率,同时将模型保存在“mnist_cnn.pt”文件中。

最新推荐

基于TensorFlow的CNN实现Mnist手写数字识别

本文实例为大家分享了基于TensorFlow的CNN实现Mnist手写数字识别的具体代码,供大家参考,具体内容如下 一、CNN模型结构 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层...

tensorflow实现残差网络方式(mnist数据集)

主要介绍了tensorflow实现残差网络方式(mnist数据集),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

使用tensorflow实现VGG网络,训练mnist数据集方式

主要介绍了使用tensorflow实现VGG网络,训练mnist数据集方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

用Pytorch训练CNN(数据集MNIST,使用GPU的方法)

今天小编就为大家分享一篇用Pytorch训练CNN(数据集MNIST,使用GPU的方法),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

竹签数据集配置yaml文件

这个是竹签数据集配置的yaml文件,里面是我本地的路径,大家需要自行确认是否修改

基于单片机温度控制系统设计--大学毕业论文.doc

基于单片机温度控制系统设计--大学毕业论文.doc

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

如何使用Promise.all()方法?

Promise.all()方法可以将多个Promise实例包装成一个新的Promise实例,当所有的Promise实例都成功时,返回的是一个结果数组,当其中一个Promise实例失败时,返回的是该Promise实例的错误信息。使用Promise.all()方法可以方便地处理多个异步操作的结果。 以下是使用Promise.all()方法的示例代码: ```javascript const promise1 = Promise.resolve(1); const promise2 = Promise.resolve(2); const promise3 = Promise.resolve(3)

android studio设置文档

android studio默认设置文档

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�