tensorflow设计一个对MNIST处理的CNN网络,网络结构和参数要求如下表,其中每一次 MaxPooling后都添加系数为0.25的 Dropout.
时间: 2023-06-01 19:01:51 浏览: 123
网络结构:
| 层类型 | 输出形状 | 参数数量 |
| --- | --- | --- |
| 输入层 | (None, 28, 28, 1) | 0 |
| 卷积层,32个3x3的过滤器,ReLU激活函数 | (None, 26, 26, 32) | 320 |
| 最大池化层,2x2的池化窗口 | (None, 13, 13, 32) | 0 |
| Dropout层,0.25的丢弃率 | (None, 13, 13, 32) | 0 |
| 卷积层,64个3x3的过滤器,ReLU激活函数 | (None, 11, 11, 64) | 18496 |
| 最大池化层,2x2的池化窗口 | (None, 5, 5, 64) | 0 |
| Dropout层,0.25的丢弃率 | (None, 5, 5, 64) | 0 |
| 展开层 | (None, 1600) | 0 |
| 全连接层,128个神经元,ReLU激活函数 | (None, 128) | 204928 |
| Dropout层,0.5的丢弃率 | (None, 128) | 0 |
| 输出层,10个神经元,softmax激活函数 | (None, 10) | 1290 |
参数数量:218,034
代码实现:
```python
import tensorflow as tf
from tensorflow.keras import layers
# 定义CNN网络结构
model = tf.keras.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
layers.MaxPooling2D((2, 2)),
layers.Dropout(0.25),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Dropout(0.25),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dropout(0.5),
layers.Dense(10, activation='softmax')
])
# 编译模型
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
```
阅读全文