count_list=[0]*(len(test_list))
时间: 2023-12-17 07:04:36 浏览: 100
这是一个Python语句,它的作用是创建一个长度和`test_list`相同的列表`count_list`,并将列表中的所有元素都初始化为0。这通常用于计数或统计某些数据的出现次数。例如,如果要统计一个字符串中每个字符出现的次数,可以先创建一个长度为字符集大小的列表,然后遍历字符串,每遇到一个字符就在对应的列表元素上加1。
相关问题
翻译代码review_list, sentiment_list = load_corpus(file_path_pos,file_path_nag) # 将全部语料按1:4分为测试集与训练集 n = len(review_list) // 5 train_review_list, train_sentiment_list = review_list[n:], sentiment_list[n:] test_review_list, test_sentiment_list = review_list[:n], sentiment_list[:n] print('训练集数量: {}'.format(str(len(train_review_list)))) print('测试集数量: {}'.format(str(len(test_review_list)))) # 用于训练的评论 review_train = [' '.join(review_to_text(review)) for review in train_review_list] # 对于训练评论对应的正常评论/恶意评论 sentiment_train = train_sentiment_list # 用于测试的评论 review_test = [' '.join(review_to_text(review)) for review in test_review_list] # 对于测试评论对应的正常评论/恶意评论 sentiment_test = test_sentiment_list count_vec = CountVectorizer(max_df=0.8, min_df=3) tfidf_vec = TfidfTransformer()
这段代码的作用是加载语料库并将其分为训练集和测试集。首先,load_corpus函数从指定的文件路径加载评论和情感标签,并将它们分别存储在review_list和sentiment_list列表中。然后,该代码将全部语料按照1:4的比例分成训练集和测试集。接着,将训练集中的评论转换为字符串形式,并将其存储在review_train列表中;train_sentiment_list列表则包含与训练集中的评论对应的情感标签。同样,测试集中的评论和情感标签分别存储在review_test和sentiment_test列表中。最后,使用CountVectorizer和TfidfTransformer将训练集中的评论转换为矩阵表示。其中,CountVectorizer对文本进行词频统计,TfidfTransformer则将词频统计矩阵转换为TF-IDF权重矩阵。
def set_data(df_0, df_1, df_9, cfg_dict): cfg_train_dict = cfg_dict['train'] df_train_1 = df_1.sample(len(df_1) - int(cfg_train_dict['simulate_pos_count']), random_state=int(cfg_train_dict['random_state'])) print('df_train_1 : ',len(df_train_1)) if cfg_train_dict['use_neg_sample'] == 'True': df_train_0 = df_0.copy() if len(df_0) >= len(df_1): df_train_0 = df_0.sample(len(df_1)) #else: # df_train_0 = df_0.append(df_9.sample(len(df_train_1) - len(df_0), # random_state=int(cfg_train_dict['random_state'])), # sort=False) else: df_train_0 = df_9.sample(round(len(df_train_1)), random_state=int(cfg_train_dict['random_state'])) df_train_0['label'] = 0 print('train set: pos_num--%i nag_num--%i' % (len(df_train_1), len(df_train_0))) df_train = df_train_1.append(df_train_0, sort=False) df_1_final_test = df_1.loc[list(set(df_1.index.tolist()).difference(set(df_train_1.index.tolist())))] #df_9_final_test = df_9.copy() 使负样本验证集等于正样本的验证集 df_9_final_test = df_9.sample(round(len(df_1_final_test)), random_state=int(cfg_train_dict['random_state'])) df_9_final_test['label'] = 0 df_ft = df_1_final_test.append(df_9_final_test, sort=False)
这段代码是一个名为 set_data 的函数,它用于设置数据集。
首先,函数从 cfg_dict 字典中获取了一个名为 cfg_train_dict 的子字典,其中包含了训练配置的相关参数。
接着,函数从 df_1 数据框中随机抽样了一部分样本作为训练集 df_train_1,抽样数量为 len(df_1) 减去 cfg_train_dict['simulate_pos_count'],random_state 参数用于设置随机种子。函数打印了 df_train_1 的长度。
然后,根据 cfg_train_dict['use_neg_sample'] 的值,函数决定如何选择负例样本。如果值为 'True',则将 df_0 数据框复制给 df_train_0,并根据 df_1 的长度进行抽样。如果 df_0 的长度大于等于 df_1 的长度,则抽样数量为 len(df_1);否则,函数还会从 df_9 数据框中抽样剩余的样本,抽样数量为 len(df_train_1) 减去 len(df_0),random_state 参数同样用于设置随机种子。
如果 cfg_train_dict['use_neg_sample'] 的值不为 'True',则直接从 df_9 数据框中抽样数量为 round(len(df_train_1)) 的样本作为负例样本,并将其赋值给 df_train_0。
接下来,函数给 df_train_0 添加了一个名为 'label' 的列,并将所有行的值都设置为 0。函数打印了 df_train_1 和 df_train_0 的长度。
然后,函数将 df_train_1 和 df_train_0 两个数据框按行合并成一个新的数据框 df_train。
接着,函数根据 df_train_1 的索引和 df_1 的索引的差异,获取了 df_1 中不在训练集中的样本,并将其赋值给 df_1_final_test。
接下来,函数从 df_9 数据框中随机抽样数量为 round(len(df_1_final_test)) 的样本作为负例测试集,并给其添加一个名为 'label' 的列,所有行的值都设置为 0。
最后,函数将 df_1_final_test 和 df_9_final_test 两个数据框按行合并成一个新的数据框 df_ft。
这段代码的作用是根据配置参数设置训练集和测试集。训练集由正例样本和负例样本组成,而测试集则包含了未在训练集中出现的正例样本和负例样本。
阅读全文