keras 怎么使用gpu,用keras举一个简单的模型
时间: 2024-02-29 13:53:29 浏览: 93
以下是一个使用Keras训练MNIST手写数字识别模型的示例代码,该代码使用GPU进行计算:
```python
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import np_utils
# 设置GPU选项
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
set_session(sess)
# 加载MNIST数据集
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# 将数据集变形为符合CNN的输入格式
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1)
input_shape = (28, 28, 1)
# 将标签转换为独热编码
y_train = np_utils.to_categorical(y_train, 10)
y_test = np_utils.to_categorical(y_test, 10)
# 构建模型
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train,
batch_size=128,
epochs=10,
verbose=1,
validation_data=(X_test, y_test))
# 评估模型
score = model.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
在这个例子中,我们使用了两个CNN层和一个Dense层来构建模型,使用GPU进行训练。在训练过程中,我们设置了batch_size和epochs等参数,使用了验证集来评估模型的性能。
阅读全文