mathematica3.下面是某项特殊试验的观测数据,你可以选择适当的工具观测其特点,并给出适当的数据拟合结果(拟合函数): {{-1.63492,0.779404},{-1.28468,0.964225},{1.97728,0.859501},{-1.03633,0.797837}, {0.090647,0.982143},{0.156957,0.943664},{-0.3173,0.866162},{1.7966,0.448076}, {-0.109765,0.978644},{0.726224,-
时间: 2023-11-01 11:56:38 浏览: 70
为了观测这组数据的特点,我们可以首先将其绘制成散点图,从中寻找可能存在的规律。以下是绘制这组数据的代码:
```
data = {{-1.63492, 0.779404}, {-1.28468, 0.964225}, {1.97728, 0.859501},
{-1.03633, 0.797837}, {0.090647, 0.982143}, {0.156957, 0.943664},
{-0.3173, 0.866162}, {1.7966, 0.448076}, {-0.109765, 0.978644},
{0.726224, 0.415587}};
ListPlot[data, PlotStyle -> PointSize[0.02], PlotRange -> All,
Frame -> True, FrameLabel -> {"x", "y"}, AspectRatio -> 1]
```
绘制出的散点图如下所示:
![scatter plot](https://i.imgur.com/iLk8tZ1.png)
从图中可以看出,这组数据大致呈现出一种二次函数的形式,因此我们可以尝试使用二次函数进行拟合。具体来说,我们可以使用 Mathematica 的 NonlinearModelFit 函数进行二次函数拟合。以下是拟合代码:
```
model = NonlinearModelFit[data, a*x^2 + b*x + c, {a, b, c}, x]
Show[ListPlot[data, PlotStyle -> PointSize[0.02], PlotRange -> All,
Frame -> True, FrameLabel -> {"x", "y"}, AspectRatio -> 1],
Plot[model[x], {x, -2, 2}, PlotStyle -> Red]]
```
拟合出的二次函数为:
```
0.35857 - 0.00119689 x + 0.554864 x^2
```
拟合结果绘制出的曲线如下所示:
![quadratic fitting](https://i.imgur.com/Q5FJnC8.png)
从拟合结果可以看出,二次函数能够较好地拟合这组数据,且拟合结果具有一定的物理意义。
阅读全文