import sys script = sys.argv[0] ip = sys.argv[1] port = sys.argv[2] print "The script name is: " , script哪里错了
时间: 2024-05-14 15:19:57 浏览: 73
在 Python 3 中,print 是一个函数,需要使用括号来调用,正确的代码应该是:
```
import sys
script = sys.argv[0]
ip = sys.argv[1]
port = sys.argv[2]
print("The script name is:", script)
```
这样就不会报错了。
相关问题
from future import print_function import sys from pyspark import SparkContext from pyspark.streaming import StreamingContext from pyspark.streaming.flume import FlumeUtils import pyspark if name == "main": if len(sys.argv) != 3: print("Usage: flume_wordcount.py <hostname> <port>", file=sys.stderr) exit(-1) sc = SparkContext(appName="FlumeEventCount") ssc = StreamingContext(sc, 2) hostname= sys.argv[1] port = int(sys.argv[2]) stream = FlumeUtils.createStream(ssc, hostname, port,pyspark.StorageLevel.MEMORY_AND_DISK_SER_2) stream.count().map(lambda cnt : "Recieve " + str(cnt) +" Flume events!!!!").pprint() ssc.start() ssc.awaitTermination()详细解释
这段代码是一个使用 PySpark 和 Flume 的实时数据流处理程序,可以统计从 Flume 传输过来的事件数量并输出。下面对每一行代码进行详细解释:
```
from future import print_function
```
这是 Python2 中使用 Python3 的 print 函数的语法,用于兼容 Python2 和 Python3。
```
import sys
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.flume import FlumeUtils
import pyspark
```
导入所需的模块和包。
```
if name == "main":
```
判断程序是否在主函数中运行。
```
if len(sys.argv) != 3:
print("Usage: flume_wordcount.py <hostname> <port>", file=sys.stderr)
exit(-1)
```
判断命令行参数是否正确,如果不正确则输出提示信息并退出程序。
```
sc = SparkContext(appName="FlumeEventCount")
```
创建 SparkContext 对象,指定应用程序名称为 "FlumeEventCount"。
```
ssc = StreamingContext(sc, 2)
```
创建 StreamingContext 对象,指定 SparkContext 对象和批处理间隔为 2 秒。
```
hostname= sys.argv[1]
port = int(sys.argv[2])
```
从命令行参数中获取 Flume 的主机名和端口号。
```
stream = FlumeUtils.createStream(ssc, hostname, port,pyspark.StorageLevel.MEMORY_AND_DISK_SER_2)
```
使用 FlumeUtils.createStream() 方法创建一个输入数据流。
```
stream.count().map(lambda cnt : "Recieve " + str(cnt) +" Flume events!!!!").pprint()
```
对流进行操作,统计接收到的事件数量,并使用 pprint() 方法输出。
```
ssc.start()
ssc.awaitTermination()
```
启动 StreamingContext 并等待程序结束。
from __future__ import print_function import sys from pyspark import SparkContext from pyspark.streaming import StreamingContext from pyspark.streaming.flume import FlumeUtils import pyspark if __name__ == "__main__": if len(sys.argv) != 3: print("Usage: flume_wordcount.py <hostname> <port>", file=sys.stderr) exit(-1) sc = SparkContext(appName="FlumeEventCount") ssc = StreamingContext(sc, 2) hostname= sys.argv[1] port = int(sys.argv[2]) stream = FlumeUtils.createStream(ssc, hostname, port,pyspark.StorageLevel.MEMORY_AND_DISK_SER_2) stream.count().map(lambda cnt : "Recieve " + str(cnt) +" Flume events!!!!").pprint() ssc.start() ssc.awaitTermination()
这段 Python 代码是一个使用 PySpark 和 Flume 来计数接收到的事件数的示例。它首先导入必要的库,然后检查命令行参数是否正确。如果参数不正确,它会打印用法信息并退出。接下来,它创建一个 SparkContext 和一个 StreamingContext,并将其设置为每 2 秒处理一次数据。然后它解析命令行参数,创建一个 Flume 流并计算事件数。最后,它启动 Spark Streaming 并等待它终止。如果您有任何问题,请随时问我。
阅读全文