df = data.sort_values(by="data",ascending=True)

时间: 2024-05-26 22:18:37 浏览: 15
这行代码是对一个名为 `data` 的 DataFrame 进行排序操作,按照 `data` 这一列的数值大小进行升序排列(即从小到大)。 更具体地说,`sort_values` 方法中的 `by` 参数指定按照哪一列排序,`ascending` 参数指定是否升序排列。在这行代码中,`ascending=True` 表示升序排列。 排序结果会返回一个新的 DataFrame,原来的 `data` DataFrame 不会被修改。
相关问题

sorted_df = df.sort_values(['State', 'Population'], ascending=[True, False])将这段代码封装起来并注释

以下是将代码封装并添加注释的示例: ```python import pandas as pd def sort_dataframe(df, by_columns, ascending_values): """ 对 Pandas dataframe 按照指定列进行排序,并返回排序后的 dataframe。 Args: df: Pandas dataframe,需要排序的数据。 by_columns: list,指定按照哪些列进行排序,可以指定多个列。 ascending_values: list,指定每个排序列对应的排序方式,True 表示升序,False 表示降序,需要与 by_columns 对应。 Returns: Pandas dataframe,排序后的数据。 Raises: 无异常。 Example: df = pd.read_csv('data.csv') sorted_df = sort_dataframe(df, ['State', 'Population'], [True, False]) """ # 按照指定列进行排序 sorted_df = df.sort_values(by=by_columns, ascending=ascending_values) return sorted_df ``` 在上述代码中,`df` 参数是需要排序的 Pandas dataframe,`by_columns` 参数指定了按照哪些列进行排序,可以指定多个列。`ascending_values` 参数指定了每个排序列对应的排序方式,True 表示升序,False 表示降序,需要与 by_columns 对应。 函数中的注释描述了函数的输入、输出、异常情况等信息,方便其他人使用和理解。

Genre_data_NA = data.pivot_table(index = ['Genre',],values='NA_Sales',aggfunc=np.sum).sort_values('NA_Sales',ascending=False) Genre_data_EU =data.pivot_table(index = ['Genre',],values='EU_Sales',aggfunc=np.sum).sort_values('EU_Sales',ascending=False) Genre_data_JP = data.pivot_table(index = ['Genre',],values='JP_Sales',aggfunc=np.sum).sort_values('JP_Sales',ascending=False) Genre_data_Other =data.pivot_table(index = ['Genre',],values='Other_Sales',aggfunc=np.sum).sort_values('Other_Sales',ascending=False) Genre_data_NA # Genre_data_DF = pd.concat([Genre_data_NA,Genre_data_EU,Genre_data_JP,Genre_data_Other],axis = 1) data=Genre_data_NA Genre_name = data._stat_axis.values.tolist() # explodes=[0.1,0.1,0.1,0.1] plt.figure(figsize=(10,10)) plt.subplot(2,2,1) plt.pie(x=Genre_data_NA,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("北美地区的不同类型游戏销售额") plt.subplot(2,2,2) plt.pie(x=Genre_data_EU,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("欧洲地区的不同类型游戏销售额") plt.subplot(2,2,3) plt.pie(x=Genre_data_JP,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("日本地区的不同类型游戏销售额") plt.subplot(2,2,4) plt.pie(x=Genre_data_Other,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("其它地区的不同类型游戏销售额") plt.show()

这段代码用于绘制不同地区(北美、欧洲、日本和其他地区)的游戏销售额占比的饼图。下面是对代码的解释: 1. `Genre_data_NA = data.pivot_table(index = ['Genre',],values='NA_Sales',aggfunc=np.sum).sort_values('NA_Sales',ascending=False)`:这行代码使用`pivot_table`函数创建一个数据透视表,按照游戏类型(Genre)对北美地区的销售额(NA_Sales)进行分组,并计算每种类型游戏的销售总额,然后按降序排列。 2. `Genre_data_EU =data.pivot_table(index = ['Genre',],values='EU_Sales',aggfunc=np.sum).sort_values('EU_Sales',ascending=False)`:这行代码同样使用`pivot_table`函数创建一个数据透视表,按照游戏类型对欧洲地区的销售额进行分组,并计算每种类型游戏的销售总额,然后按降序排列。 3. `Genre_data_JP = data.pivot_table(index = ['Genre',],values='JP_Sales',aggfunc=np.sum).sort_values('JP_Sales',ascending=False)` 和 `Genre_data_Other =data.pivot_table(index = ['Genre',],values='Other_Sales',aggfunc=np.sum).sort_values('Other_Sales',ascending=False)`:这两行代码分别创建了针对日本地区和其他地区的数据透视表,计算每种类型游戏在不同地区的销售总额。 4. `plt.figure(figsize=(10,10))`:这行代码创建一个大小为10x10英寸的画布。 5. `plt.subplot(2,2,1)` 到 `plt.subplot(2,2,4)`:这四行代码分别创建了一个包含四个子图的图像,每个子图对应一个地区的销售额占比饼图。 6. `plt.pie(x=Genre_data_NA,labels=Genre_name,autopct="%0.1f%%",shadow=True)` 到 `plt.pie(x=Genre_data_Other,labels=Genre_name,autopct="%0.1f%%",shadow=True)`:这四行代码使用`pie`函数绘制饼图,其中x参数为销售额数据,labels参数为游戏类型的名称,autopct参数为饼图上显示的百分比格式,shadow参数为是否显示阴影效果。 7. `plt.title("北美地区的不同类型游戏销售额")` 到 `plt.title("其它地区的不同类型游戏销售额")`:这四行代码分别设置四个子图的标题。 8. `plt.show()`:这行代码显示绘制的饼图。 通过这段代码,可以对比不同地区的游戏销售额占比情况,进一步分析各地区的游戏市场偏好和销售趋势。

相关推荐

忽略该脚本警告 import pandas as pd import glob def com(): file_paths = glob.glob('E:/py卓望/数据分析/top150_20230321/*.txt') data = pd.DataFrame() for i in file_paths: df = pd.read_csv(i, sep=',', header=None, skiprows=[0]) data = pd.concat([data, df]) data.drop(df.columns[0], axis=1, inplace=True) df.sort_values(by=1, ascending=False, inplace=True) data.iloc[:, 0] = data.iloc[:, 0].str.lower() data.to_csv('E:/py卓望/数据分析/all/all_file.txt', sep=',', index=False,header=False) all = pd.read_csv('E:/py卓望/数据分析/all/all_file.txt', header=None, delimiter=',') all[0] = all[0].str.split('.') all[0] = all[0].apply( lambda x: '.'.join(x[-3:]) if '.'.join(x[-2:]) in ['gov.cn', 'com.cn', 'org.cn', 'net.cn'] else '.'.join(x[-2:])) new_col = all[0] result = pd.concat([new_col,all.iloc[:,1:]],axis=1) result.to_csv('E:/py卓望/数据分析/all/二级域名.txt', sep=',',index=False,header=False) summation = pd.read_csv('E:/py卓望/数据分析/all/二级域名.txt', header=None, delimiter=',') grouped = summation.groupby(0)[1].sum().reset_index() grouped = grouped.sort_values(by=1, ascending=False).reset_index(drop=True) grouped[1] = grouped[1].fillna(summation[1]) grouped.to_csv('E:/py卓望/数据分析/all/处理后求和域名.txt', sep=',', index=False, header=False) top_10000 = pd.read_csv('E:/py卓望/数据分析/all/处理后求和域名.txt', header=None, delimiter=',') alls = top_10000.nlargest(10000, 1) alls.drop(columns=[1], inplace=True) alls.to_csv('E:/py卓望/数据分析/all/data.txt', sep=',',index=False, header=False) final = top_10000.iloc[10000:] final.drop(columns=[1], inplace=True) final.to_csv('E:/py卓望/数据分析/all/final_data.txt', sep=',',index=False, header=False) print(final.to_csv) warnings.filterwarnings("ignore") def main(): com() if __name__ == "__main__": print("开始清洗域名文件") main() print("数据清洗完毕")

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, classification_report, accuracy_score # 1. 数据准备 train_data = pd.read_csv('train.csv') test_data = pd.read_csv('test_noLabel.csv') # 填充缺失值 train_data.fillna(train_data.mean(), inplace=True) test_data.fillna(test_data.mean(), inplace=True) # 2. 特征工程 X_train = train_data.drop(['Label', 'ID'], axis=1) y_train = train_data['Label'] X_test = test_data.drop('ID', axis=1) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 3. 模型建立 model = RandomForestClassifier(n_estimators=100, random_state=42) # 4. 模型训练 model.fit(X_train, y_train) # 5. 进行预测 y_pred = model.predict(X_test) # 6. 保存预测结果 df_result = pd.DataFrame({'ID': test_data['ID'], 'Label': y_pred}) df_result.to_csv('forecast_result.csv', index=False) # 7. 模型评估 y_train_pred = model.predict(X_train) print('训练集准确率:', accuracy_score(y_train, y_train_pred)) print('测试集准确率:', accuracy_score(y_test, y_pred)) print(classification_report(y_test, y_pred)) # 8. 绘制柱形图 feature_importances = pd.Series(model.feature_importances_, index=X_train.columns) feature_importances = feature_importances.sort_values(ascending=False) plt.figure(figsize=(10, 6)) sns.barplot(x=feature_importances, y=feature_importances.index) plt.xlabel('Feature Importance Score') plt.ylabel('Features') plt.title('Visualizing Important Features') plt.show() # 9. 对比类分析 train_data['Label'].value_counts().plot(kind='bar', color=['blue', 'red']) plt.title('Class Distribution') plt.xlabel('Class') plt.ylabel('Frequency') plt.show()

2、为下面的程序的每一行标上注释; import requests import re import pandas as pd import time import datetime url = 'http://datacenter-web.eastmoney.com/api/data/v1/get?' name_list = [] code_list = [] trader_date_list = [] close_list = [] change_rate_list = [] buy_num_list = [] result_list = [] result_df = pd.DataFrame() for page in range(1, 4): params = ( ('callback', 'jQuery112305930880286224138_1632364981303'), ('sortColumns', 'NET_BUY_AMT,TRADE_DATE,SECURITY_CODE'), ('sortTypes', '-1,-1,1'), ('pageSize', '50'), ('pageNumber', str(page)), ('reportName', 'RPT_ORGANIZATION_TRADE_DETAILS'), ('columns', 'ALL'), ('source', 'WEB'), ('clientl', 'WE'), ('filter', "(TRADE_DATE>='2021-09-17')") ) response = requests.get(url, params=params) text = response.text print(text) # re准则查找数据 name = re.findall('"SECURITY_NAME_ABBR":"(.*?)"', text) # 名称 code = re.findall('"SECURITY_CODE":"(.*?)"', text) # 股票代码 trader_date = re.findall('"TRADE_DATE":"(.*?)"', text) # 交易日期 close = re.findall('"CLOSE_PRICE":(.*?)\,', text) # 收盘价 change_rate = re.findall('"CHANGE_RATE":(.*?)\,', text) # 涨幅 buy_num = re.findall('"BUY_TIMES":(.*?)\,', text) # 买入机构数量 # 将对应的列表里的数据全部加起来 name_list = name_list + name code_list = code_list + code trader_date_list = trader_date_list + trader_date close_list = close_list + close change_rate_list = change_rate_list + change_rate buy_num_list = buy_num_list + buy_num time.sleep(2) # 将所有列表合并成二维数组 result_list = [trader_date_list, code_list, name_list, close_list, change_rate_list, buy_num_list] # 将数据转为DataFrame格式 result_df = pd.DataFrame(result_list).T.rename( columns={0: '交易日期', 1: '股票代码', 2: '股票名称', 3: '收盘价', 4: '涨幅', 5: '买入机构'}) result_df['交易日期'] =pd.to_datetime(result_df['交易日期']) # 时间只取年月日 result_df = result_df.sort_values(by='交易日期', ascending=True) print(result_df)

#importing required libraries from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, Dropout, LSTM #setting index data = df.sort_index(ascending=True, axis=0) new_data = data[['trade_date', 'close']] new_data.index = new_data['trade_date'] new_data.drop('trade_date', axis=1, inplace=True) new_data.head() #creating train and test sets dataset = new_data.values train= dataset[0:1825,:] valid = dataset[1825:,:] #converting dataset into x_train and y_train scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(dataset) x_train, y_train = [], [] for i in range(60,len(train)): x_train.append(scaled_data[i-60:i,0]) y_train.append(scaled_data[i,0]) x_train, y_train = np.array(x_train), np.array(y_train) x_train = np.reshape(x_train, (x_train.shape[0],x_train.shape[1],1)) # create and fit the LSTM network model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1],1))) model.add(LSTM(units=50)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(x_train, y_train, epochs=1, batch_size=1, verbose=1) #predicting 246 values, using past 60 from the train data inputs = new_data[len(new_data) - len(valid) - 60:].values inputs = inputs.reshape(-1,1) inputs = scaler.transform(inputs) X_test = [] for i in range(60,inputs.shape[0]): X_test.append(inputs[i-60:i,0]) X_test = np.array(X_test) X_test = np.reshape(X_test, (X_test.shape[0],X_test.shape[1],1)) closing_price = model.predict(X_test) closing_price1 = scaler.inverse_transform(closing_price) rms=np.sqrt(np.mean(np.power((valid-closing_price1),2))) rms #v=new_data[1825:] valid1 = pd.DataFrame() # 假设你使用的是Pandas DataFrame valid1['Pre_Lstm'] = closing_price1 train=new_data[:1825] plt.figure(figsize=(16,8)) plt.plot(train['close']) plt.plot(valid1['close'],label='真实值') plt.plot(valid1['Pre_Lstm'],label='预测值') plt.title('LSTM预测',fontsize=16) plt.xlabel('日期',fontsize=14) plt.ylabel('收盘价',fontsize=14) plt.legend(loc=0)

最新推荐

recommend-type

Python学习笔记16 - 猜数字小游戏

猜数字小游戏的相关函数,与主程序搭配使用
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Flask中的请求处理

![【进阶】Flask中的请求处理](https://img-blog.csdnimg.cn/20200422085130952.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqMTEzMTE5MDQyNQ==,size_16,color_FFFFFF,t_70) # 1. Flask请求处理概述** Flask是一个轻量级的Web框架,它提供了一个简洁且灵活的接口来处理HTTP请求。在Flask中,请求处理是一个核心概念,它允许
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到
recommend-type

BSC绩效考核指标汇总 (3).pdf

BSC(Balanced Scorecard,平衡计分卡)是一种企业绩效管理系统,它将公司的战略目标分解为四个维度:财务、客户、内部流程和学习与成长。在这个文档中,我们看到的是针对特定行业(可能是保险或保险经纪)的BSC绩效考核指标汇总,专注于财务类和非财务类的关键绩效指标(KPIs)。 财务类指标: 1. 部门费用预算达成率:衡量实际支出与计划费用之间的对比,通过公式 (实际部门费用/计划费用)*100% 来计算,数据来源于部门的预算和实际支出记录。 2. 项目研究开发费用预算达成率:同样用于评估研发项目的资金管理,公式为 (实际项目研究开发费用/计划费用)*100%。 3. 课题费用预算达成率、招聘费用预算达成率、培训费用预算达成率 和 新产品研究开发费用预算达成率:这些都是人力资源相关开支的预算执行情况,涉及到费用的实际花费与计划金额的比例。 4. 承保利润:衡量保险公司盈利能力的重要指标,包括赔付率和寿险各险种的死差损益(实际死亡率与预期死亡率的差异)。 5. 赔付率:反映保险公司的赔付情况,是业务健康度的一个关键指标。 6. 内嵌价值的增加:代表了保单的价值增长,反映了公司长期盈利能力。 7. 人力成本总额控制率:通过比较实际人力成本与计划成本来评估人力成本的有效管理。 8. 标准保费达成率:衡量公司的销售业绩,即实际收取保费与目标保费的比率。 9. 其他费用比率,如附加佣金、续期推动费用、业务推动费用等,用来评估营销费用的效率。 非财务类指标: 1. 销售目标达成率:衡量销售团队完成预定目标的程度,通过实际销售额与计划销售额的比率计算。 2. 理赔率:体现客户服务质量和效率,涉及保险公司处理理赔请求的速度和成功率。 3. 产品/服务销售收入达成率:衡量产品或服务的实际销售效果,反映市场响应和客户满意度。 这些指标集合在一起,提供了全面的视角来评估公司的经营效率、财务表现以及战略执行情况。通过定期跟踪和分析这些数据,企业可以持续优化策略,提升业绩,确保与整体战略目标的一致性。每个指标的数据来源通常来自于相关部门的预算和实际操作记录,确保信息的准确性。