df = data.sort_values(by="data",ascending=True)
时间: 2024-05-26 16:18:37 浏览: 105
这行代码是对一个名为 `data` 的 DataFrame 进行排序操作,按照 `data` 这一列的数值大小进行升序排列(即从小到大)。
更具体地说,`sort_values` 方法中的 `by` 参数指定按照哪一列排序,`ascending` 参数指定是否升序排列。在这行代码中,`ascending=True` 表示升序排列。
排序结果会返回一个新的 DataFrame,原来的 `data` DataFrame 不会被修改。
相关问题
def query(request): try: context = { 'segment': 'index' } goodss = [] good = {} # crawl(keyword) df = pd.read_csv('res2.csv',header=None) thread_num = request.GET.get('sort') query = request.GET.get('query') print(thread_num) if not query =='': df = df.loc[df[2].str.contains(query)] if thread_num == 'value_up': df = df.sort_values(by = [1],ascending=False) elif thread_num == 'value_down': df = df.sort_values(by = [1],ascending=True) elif thread_num == 'title': df = df.sort_values(by = [2],ascending=True) for data in df.values.tolist(): good['price'] = data[1] good['store'] = data[3] good['title'] = data[2] good['platform'] = '京东' good['pic_url'] = 'https://www.baidu.com' goodss.append(copy.copy(good))
这是一个 Python 的 Django 框架的视图函数,用于处理用户的查询请求。函数首先将一个空的列表 `goodss` 和一个空的字典 `good` 初始化。然后从文件 'res2.csv' 中读取数据,将用户查询的关键词 `query` 和排序方式 `thread_num` 获取到。如果用户有输入查询关键词,则使用 Pandas 库对数据进行筛选,只保留包含查询关键词的行。根据用户选择的排序方式,使用 Pandas 库对数据进行排序。最后将每一行数据封装成一个字典 `good`,并将该字典拷贝到列表 `goodss` 中,最终将 `goodss` 列表作为上下文参数传递给模板进行渲染。
Genre_data_NA = data.pivot_table(index = ['Genre',],values='NA_Sales',aggfunc=np.sum).sort_values('NA_Sales',ascending=False) Genre_data_EU =data.pivot_table(index = ['Genre',],values='EU_Sales',aggfunc=np.sum).sort_values('EU_Sales',ascending=False) Genre_data_JP = data.pivot_table(index = ['Genre',],values='JP_Sales',aggfunc=np.sum).sort_values('JP_Sales',ascending=False) Genre_data_Other =data.pivot_table(index = ['Genre',],values='Other_Sales',aggfunc=np.sum).sort_values('Other_Sales',ascending=False) Genre_data_NA # Genre_data_DF = pd.concat([Genre_data_NA,Genre_data_EU,Genre_data_JP,Genre_data_Other],axis = 1) data=Genre_data_NA Genre_name = data._stat_axis.values.tolist() # explodes=[0.1,0.1,0.1,0.1] plt.figure(figsize=(10,10)) plt.subplot(2,2,1) plt.pie(x=Genre_data_NA,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("北美地区的不同类型游戏销售额") plt.subplot(2,2,2) plt.pie(x=Genre_data_EU,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("欧洲地区的不同类型游戏销售额") plt.subplot(2,2,3) plt.pie(x=Genre_data_JP,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("日本地区的不同类型游戏销售额") plt.subplot(2,2,4) plt.pie(x=Genre_data_Other,labels=Genre_name,autopct="%0.1f%%",shadow=True) plt.title("其它地区的不同类型游戏销售额") plt.show()
这段代码用于绘制不同地区(北美、欧洲、日本和其他地区)的游戏销售额占比的饼图。下面是对代码的解释:
1. `Genre_data_NA = data.pivot_table(index = ['Genre',],values='NA_Sales',aggfunc=np.sum).sort_values('NA_Sales',ascending=False)`:这行代码使用`pivot_table`函数创建一个数据透视表,按照游戏类型(Genre)对北美地区的销售额(NA_Sales)进行分组,并计算每种类型游戏的销售总额,然后按降序排列。
2. `Genre_data_EU =data.pivot_table(index = ['Genre',],values='EU_Sales',aggfunc=np.sum).sort_values('EU_Sales',ascending=False)`:这行代码同样使用`pivot_table`函数创建一个数据透视表,按照游戏类型对欧洲地区的销售额进行分组,并计算每种类型游戏的销售总额,然后按降序排列。
3. `Genre_data_JP = data.pivot_table(index = ['Genre',],values='JP_Sales',aggfunc=np.sum).sort_values('JP_Sales',ascending=False)` 和 `Genre_data_Other =data.pivot_table(index = ['Genre',],values='Other_Sales',aggfunc=np.sum).sort_values('Other_Sales',ascending=False)`:这两行代码分别创建了针对日本地区和其他地区的数据透视表,计算每种类型游戏在不同地区的销售总额。
4. `plt.figure(figsize=(10,10))`:这行代码创建一个大小为10x10英寸的画布。
5. `plt.subplot(2,2,1)` 到 `plt.subplot(2,2,4)`:这四行代码分别创建了一个包含四个子图的图像,每个子图对应一个地区的销售额占比饼图。
6. `plt.pie(x=Genre_data_NA,labels=Genre_name,autopct="%0.1f%%",shadow=True)` 到 `plt.pie(x=Genre_data_Other,labels=Genre_name,autopct="%0.1f%%",shadow=True)`:这四行代码使用`pie`函数绘制饼图,其中x参数为销售额数据,labels参数为游戏类型的名称,autopct参数为饼图上显示的百分比格式,shadow参数为是否显示阴影效果。
7. `plt.title("北美地区的不同类型游戏销售额")` 到 `plt.title("其它地区的不同类型游戏销售额")`:这四行代码分别设置四个子图的标题。
8. `plt.show()`:这行代码显示绘制的饼图。
通过这段代码,可以对比不同地区的游戏销售额占比情况,进一步分析各地区的游戏市场偏好和销售趋势。
阅读全文