当CNN模型输入有两个input1和input2时,其中input2在input1经过卷积之后与他融合的情况下,input.requires_grad_(True)如何修改
时间: 2024-03-03 20:51:38 浏览: 109
Pytorch训练过程中改变模型参数 requires_grad 属性
5星 · 资源好评率100%
如果你想让`input1`需要梯度,但是`input2`不需要,可以这样修改:
```
input1.requires_grad_(True)
input2.requires_grad_(False)
```
在卷积融合之后,如果你想让整个模型的参数都需要梯度,可以使用`model.parameters()`和`requires_grad_()`方法:
```
import torch.nn as nn
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.fc = nn.Linear(32 * 8 * 8, 10)
def forward(self, x1, x2):
out1 = self.conv1(x1)
out2 = self.conv1(x2)
out = out1 + out2
out = nn.functional.relu(out)
out = self.conv2(out)
out = nn.functional.max_pool2d(out, 2)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
model = MyModel()
model.conv2.weight.requires_grad_(True)
model.fc.weight.requires_grad_(True)
```
在上面的代码中,我们将`conv2`和`fc`的参数设置为需要梯度。这样,当我们反向传播时,这些参数的梯度将会被计算和更新。
阅读全文