img = Image.open(img_path) img = data_transform(img) img_list.append(img)
时间: 2023-10-26 09:07:56 浏览: 77
这段代码主要是读取指定路径下的图像文件,然后将其进行数据转换(可能包括大小调整、归一化、裁剪等操作),最后将处理好的图像添加到一个列表中。具体来说,代码中的`Image.open()`函数是Python Imaging Library (PIL)库中的函数,用于读取图像文件;`data_transform()`函数可能是自定义的数据转换函数,用于将图像数据进行处理;`img_list`则是一个列表,用于存储处理好的图像。
相关问题
model.eval() batch_size = 8 # 每次预测时将多少张图片打包成一个batch with torch.no_grad(): for ids in range(0, len(img_path_list) // batch_size): img_list = [] for img_path in img_path_list[ids * batch_size: (ids + 1) * batch_size]: assert os.path.exists(img_path), f"file: '{img_path}' dose not exist." img = Image.open(img_path) img = data_transform(img) img_list.append(img)
这段代码用于进行图像分类预测。具体地,代码首先调用`model.eval()`函数将模型设置为评估模式,这通常用于在推断阶段对模型进行预测。然后,代码定义了一个变量`batch_size`,表示每次预测时将多少张图片打包成一个batch。
接着,代码使用`torch.no_grad()`来关闭梯度计算,这通常用于在推断阶段减少内存占用。然后,代码使用一个`for`循环遍历所有的输入图像。每次循环中,代码使用`img_path_list`中的图像路径来读取对应的图像,并使用`data_transform`函数对图像进行预处理。`data_transform`函数通常用于对输入图像进行归一化、缩放、裁剪等操作,以便将其转换为模型所期望的输入格式。
注意,在这个循环中,每次处理`batch_size`个图像。这是为了将多个图像一起输入到模型中,以加快推断速度。如果一次只处理一个图像,那么模型的推断速度会非常慢。
需要注意的是,这段代码假定了`data_transform`函数已经在程序中定义。如果`data_transform`函数没有定义,程序会抛出`NameError`异常。通常情况下,`data_transform`函数是通过使用PyTorch提供的`torchvision.transforms`模块来实现的。因此,在使用该代码之前,需要确保已经正确导入了`torchvision.transforms`模块。
import os import json import torch from PIL import Image from torchvision import transforms from model import resnet34 def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image # 指向需要遍历预测的图像文件夹 imgs_root = "../dataset/val" assert os.path.exists(imgs_root), f"file: '{imgs_root}' dose not exist." # 读取指定文件夹下所有jpg图像路径 img_path_list = [os.path.join(imgs_root, i) for i in os.listdir(imgs_root) if i.endswith(".jpg")] # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), f"file: '{json_path}' dose not exist." json_file = open(json_path, "r") class_indict = json.load(json_file) # create model model = resnet34(num_classes=16).to(device) # load model weights weights_path = "./newresNet34.pth" assert os.path.exists(weights_path), f"file: '{weights_path}' dose not exist." model.load_state_dict(torch.load(weights_path, map_location=device)) # prediction model.eval() batch_size = 8 # 每次预测时将多少张图片打包成一个batch with torch.no_grad(): for ids in range(0, len(img_path_list) // batch_size): img_list = [] for img_path in img_path_list[ids * batch_size: (ids + 1) * batch_size]: assert os.path.exists(img_path), f"file: '{img_path}' dose not exist." img = Image.open(img_path) img = data_transform(img) img_list.append(img) # batch img # 将img_list列表中的所有图像打包成一个batch batch_img = torch.stack(img_list, dim=0) # predict class output = model(batch_img.to(device)).cpu() predict = torch.softmax(output, dim=1) probs, classes = torch.max(predict, dim=1) for idx, (pro, cla) in enumerate(zip(probs, classes)): print("image: {} class: {} prob: {:.3}".format(img_path_list[ids * batch_size + idx], class_indict[str(cla.numpy())], pro.numpy())) if __name__ == '__main__': main()
这段代码实现了导入必要的包和模块,包括操作系统、JSON、PyTorch、PIL及其转换模块、还有定义的resnet34模型。在主函数中,首先根据可用GPU情况使用cuda或cpu作为设备,然后定义数据的处理流程,包括缩放、剪裁、转换为Tensor并进行标准化。
阅读全文