卷积神经网络文本分类输出“INFO:tensorflow:loss = 2.7123044, step = 1 INFO:tensorflow:global_step/sec: 20.6579 INFO:tensorflow:loss = 0.6935246, step = 101 (4.845 sec) INFO:tensorflow:global_step/sec: 21.4862 INFO:tensorflow:loss = 0.690876, step = 201 (4.653 sec) INFO:tensorflow:global_step/sec: 21.0751 INFO:tensorflow:loss = 0.6989775, step = 301 (4.746 sec) INFO:tensorflow:global_step/sec: 20.0358 INFO:tensorflow:loss = 0.17170498, step = 401 (4.992 sec) INFO:tensorflow:global_step/sec: 20.2619 INFO:tensorflow:loss = 0.12468583, step = 501 (4.933 sec) INFO:tensorflow:global_step/sec: 19.8202 INFO:tensorflow:loss = 0.08017796, step = 601 (5.045 sec) INFO:tensorflow:global_step/sec: 19.3961 INFO:tensorflow:loss = 0.10280039, step = 701 (5.157 sec) INFO:tensorflow:global_step/sec: 19.2021 INFO:tensorflow:loss = 0.06563924, step = 801 (5.208 sec) INFO:tensorflow:global_step/sec: 18.6664 INFO:tensorflow:loss = 0.094031714, step = 901 (5.357 sec)”从析器损失函数数值、步数和每秒钟训练次数等方面,详细分析分析该模型优劣
时间: 2023-12-19 22:05:47 浏览: 119
AttributeError: module 'tensorflow.compat.v1' has no attribute '
从上述输出可以看出,该卷积神经网络模型的损失函数从2.71下降到了0.06左右,训练步数也达到了900多步,说明该模型经过了较长时间的训练,且在训练过程中损失函数逐渐减小,模型性能逐渐提高。
另外,可以看出该模型每秒钟训练次数在20次左右,这是一个较为理想的训练速度。
综上所述,从损失函数的下降趋势和训练步数来看,该模型的优劣表现良好;从训练速度来看,该模型的效率也比较高。
阅读全文