使用TensorFlow对https://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/waimai_10k/waimai_10k.csv该文本进行文本分类
时间: 2023-10-03 07:09:57 浏览: 97
好的,首先需要做的是加载数据集,可以使用Pandas库读取CSV文件。代码如下:
```python
import pandas as pd
data = pd.read_csv("https://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/waimai_10k/waimai_10k.csv")
```
接下来,我们需要对文本进行预处理,包括去除停用词、分词、将文本转换为数字等。这里我们使用jieba和sklearn库来实现。代码如下:
```python
import jieba
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
stopwords = [line.strip() for line in open('stopwords.txt', 'r', encoding='utf-8').readlines()]
def preprocess_text(text):
text = ''.join([word for word in text if word not in stopwords])
seg_list = jieba.cut(text)
return " ".join(seg_list)
data['text'] = data['review'].apply(preprocess_text)
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(data['text'])
y = data['label']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
最后,我们使用TensorFlow来搭建文本分类模型。这里我们使用全连接神经网络(Dense)作为模型结构,使用交叉熵损失函数和Adam优化器进行训练。代码如下:
```python
import tensorflow as tf
from tensorflow.keras import layers
model = tf.keras.Sequential([
layers.Dense(64, activation='relu', input_shape=(X_train.shape[1],)),
layers.Dense(32, activation='relu'),
layers.Dense(1, activation='sigmoid')
])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, y_train, epochs=10, batch_size=32)
```
以上代码只是一个简单的例子,实际的文本分类任务可能需要更复杂的模型和更多的预处理步骤。
阅读全文