使用TensorFlow对https://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/waimai_10k/waimai_10k.csv该文本进行分类
时间: 2023-10-03 10:10:49 浏览: 174
好的,对于这个任务,我们可以使用 TensorFlow 和 Keras 来构建一个文本分类模型。以下是步骤:
1. 加载数据集
我们可以使用 Pandas 库来加载 csv 文件,并使用 Sklearn 库中的 train_test_split 将数据集分为训练集和测试集。
```python
import pandas as pd
from sklearn.model_selection import train_test_split
df = pd.read_csv('https://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/waimai_10k/waimai_10k.csv', header=None)
df.columns = ['label', 'text']
X_train, X_test, y_train, y_test = train_test_split(df['text'], df['label'], test_size=0.2, random_state=42)
```
2. 数据预处理
我们需要对文本进行预处理,包括去除停用词、分词、转化为数字向量等等。我们可以使用中文自然语言处理库 jieba 来进行分词,并使用 Keras 库中的 Tokenizer 对文本进行转化为数字向量。
```python
import jieba
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
# 分词
def cut_words(text):
return ' '.join(jieba.cut(text))
X_train = X_train.apply(cut_words)
X_test = X_test.apply(cut_words)
# Tokenizer
tokenizer = Tokenizer(num_words=5000)
tokenizer.fit_on_texts(X_train)
X_train_seq = tokenizer.texts_to_sequences(X_train)
X_test_seq = tokenizer.texts_to_sequences(X_test)
# Padding
X_train_pad = pad_sequences(X_train_seq, maxlen=100)
X_test_pad = pad_sequences(X_test_seq, maxlen=100)
```
3. 构建模型
我们使用 Keras 库构建一个简单的神经网络模型,包括一个 Embedding 层、一个 LSTM 层和一个全连接层。
```python
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense
model = Sequential()
model.add(Embedding(input_dim=len(tokenizer.word_index)+1, output_dim=100, input_length=100))
model.add(LSTM(units=64, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(units=1, activation='sigmoid'))
model.summary()
```
4. 训练模型
我们使用二元交叉熵作为损失函数,使用 Adam 优化器进行优化,并使用准确率作为评估指标。
```python
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train_pad, y_train, validation_split=0.2, epochs=10, batch_size=64)
```
5. 评估模型
我们使用测试集来评估模型的性能。
```python
loss, accuracy = model.evaluate(X_test_pad, y_test)
print('Test loss:', loss)
print('Test accuracy:', accuracy)
```
完整代码如下:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
import jieba
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense
# 加载数据集
df = pd.read_csv('https://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/waimai_10k/waimai_10k.csv', header=None)
df.columns = ['label', 'text']
X_train, X_test, y_train, y_test = train_test_split(df['text'], df['label'], test_size=0.2, random_state=42)
# 分词
def cut_words(text):
return ' '.join(jieba.cut(text))
X_train = X_train.apply(cut_words)
X_test = X_test.apply(cut_words)
# Tokenizer
tokenizer = Tokenizer(num_words=5000)
tokenizer.fit_on_texts(X_train)
X_train_seq = tokenizer.texts_to_sequences(X_train)
X_test_seq = tokenizer.texts_to_sequences(X_test)
# Padding
X_train_pad = pad_sequences(X_train_seq, maxlen=100)
X_test_pad = pad_sequences(X_test_seq, maxlen=100)
# 模型构建
model = Sequential()
model.add(Embedding(input_dim=len(tokenizer.word_index)+1, output_dim=100, input_length=100))
model.add(LSTM(units=64, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(units=1, activation='sigmoid'))
model.summary()
# 模型训练
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train_pad, y_train, validation_split=0.2, epochs=10, batch_size=64)
# 模型评估
loss, accuracy = model.evaluate(X_test_pad, y_test)
print('Test loss:', loss)
print('Test accuracy:', accuracy)
```
阅读全文