Python代码实现基于神经网络的THUCNews数据集文本分类
时间: 2023-08-01 22:06:02 浏览: 131
好的,以下是基于神经网络的THUCNews数据集文本分类的Python代码实现:
```python
import os
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import to_categorical
from sklearn.model_selection import train_test_split
# 加载数据集
def load_data(path, num_words, max_len, test_size=0.2):
with open(path, 'r', encoding='utf-8') as f:
lines = f.readlines()
texts, labels = [], []
for line in lines:
label, text = line.strip().split('\t')
texts.append(text)
labels.append(label)
tokenizer = keras.preprocessing.text.Tokenizer(num_words=num_words)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
word_index = tokenizer.word_index
data = pad_sequences(sequences, maxlen=max_len)
labels = to_categorical(np.asarray(labels, dtype='int32'))
x_train, x_test, y_train, y_test = train_test_split(data, labels, test_size=test_size)
return x_train, y_train, x_test, y_test, word_index
# 定义模型
def define_model(max_len, word_index, num_classes):
model = keras.Sequential()
model.add(keras.layers.Embedding(len(word_index) + 1, 128, input_length=max_len))
model.add(keras.layers.Conv1D(64, 5, activation='relu'))
model.add(keras.layers.MaxPooling1D(5))
model.add(keras.layers.Conv1D(64, 5, activation='relu'))
model.add(keras.layers.MaxPooling1D(5))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(128, activation='relu'))
model.add(keras.layers.Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# 训练模型
def train_model(model, x_train, y_train, x_test, y_test, batch_size, epochs):
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test))
# 评估模型
def evaluate_model(model, x_test, y_test):
loss, accuracy = model.evaluate(x_test, y_test)
print('loss: {}\naccuracy: {}'.format(loss, accuracy))
# 预测新数据
def predict_new_data(model, text, word_index, max_len):
tokenizer = keras.preprocessing.text.Tokenizer(num_words=len(word_index))
tokenizer.fit_on_texts(text)
sequences = tokenizer.texts_to_sequences(text)
data = pad_sequences(sequences, maxlen=max_len)
result = model.predict(data)
return result
# 主函数
if __name__ == "__main__":
path = 'THUCNews_train.txt'
num_words = 5000
max_len = 100
batch_size = 64
epochs = 10
num_classes = 10
x_train, y_train, x_test, y_test, word_index = load_data(path, num_words, max_len)
model = define_model(max_len, word_index, num_classes)
train_model(model, x_train, y_train, x_test, y_test, batch_size, epochs)
evaluate_model(model, x_test, y_test)
```
注:以上代码中的 THUCNews_train.txt 是 THUCNews 数据集的训练集,需要自行下载。此外,该代码只实现了简单的卷积神经网络模型,仅供参考,具体的模型结构和参数需要根据实际情况进行调整。
阅读全文
相关推荐

















