用python基于神经网络的THUCNews数据集文本分类

时间: 2024-06-09 09:08:27 浏览: 23
好的,我可以给你提供一个基于神经网络的THUCNews数据集文本分类的Python实现。 首先,我们需要下载THUCNews数据集。可以在清华大学开源软件镜像站上下载,链接为:https://mirror.tuna.tsinghua.edu.cn/thulac/data/THUCNews.zip。 接下来,我们需要对数据进行预处理。我们可以使用Python中的jieba库进行中文分词,然后将分词结果转化成数字形式。代码如下所示: ```python import jieba import os import numpy as np # 加载停用词 stopwords = [] with open('stopwords.txt', 'r', encoding='utf-8') as f: for line in f: stopwords.append(line.strip()) # 对文本进行分词和数字化处理 def preprocess_text(text, word_to_id, max_length): words = jieba.cut(text) words = [word for word in words if word not in stopwords] words = [word_to_id[word] if word in word_to_id else 0 for word in words] if len(words) < max_length: words += [0] * (max_length - len(words)) else: words = words[:max_length] return np.array(words) ``` 接下来,我们需要将文本数据转化成数字形式。我们可以先将所有文本中的单词统计出来,然后根据单词出现次数进行排序,将出现频率最高的前N个单词作为我们的词汇表。代码如下所示: ```python # 构建词汇表 def build_vocab(data_path, vocab_path, vocab_size): word_to_count = {} with open(data_path, 'r', encoding='utf-8') as f: for line in f: line = line.strip().split('\t') if len(line) != 2: continue words = jieba.cut(line[1]) for word in words: if word not in word_to_count: word_to_count[word] = 0 word_to_count[word] += 1 sorted_words = sorted(word_to_count.items(), key=lambda x: x[1], reverse=True) # 取出现频率最高的前vocab_size个单词 vocab = ['<PAD>', '<UNK>'] + [x[0] for x in sorted_words[:vocab_size - 2]] with open(vocab_path, 'w', encoding='utf-8') as f: f.write('\n'.join(vocab)) ``` 接下来,我们可以将所有文本数据转化成数字形式。代码如下所示: ```python # 将数据转化成数字形式 def convert_data_to_id(data_path, vocab_path, max_length): with open(vocab_path, 'r', encoding='utf-8') as f: vocab = [line.strip() for line in f] word_to_id = {word: i for i, word in enumerate(vocab)} labels = [] texts = [] with open(data_path, 'r', encoding='utf-8') as f: for line in f: line = line.strip().split('\t') if len(line) != 2: continue label = int(line[0]) text = preprocess_text(line[1], word_to_id, max_length) labels.append(label) texts.append(text) return np.array(labels), np.array(texts) ``` 接下来,我们可以定义神经网络模型。这里我们使用一个简单的卷积神经网络,代码如下所示: ```python import tensorflow as tf # 定义卷积神经网络模型 def cnn_model(inputs, num_classes, vocab_size, embedding_size, filter_sizes, num_filters): # Embedding Layer with tf.name_scope("embedding"): W = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0), name="W") embedded_chars = tf.nn.embedding_lookup(W, inputs) embedded_chars_expanded = tf.expand_dims(embedded_chars, -1) # Convolution and Max Pooling Layers pooled_outputs = [] for i, filter_size in enumerate(filter_sizes): with tf.name_scope("conv-maxpool-%s" % filter_size): # Convolution Layer filter_shape = [filter_size, embedding_size, 1, num_filters] W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W") b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b") conv = tf.nn.conv2d(embedded_chars_expanded, W, strides=[1, 1, 1, 1], padding="VALID", name="conv") # Activation Function h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu") # Max Pooling Layer pooled = tf.nn.max_pool(h, ksize=[1, inputs.shape[1] - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding="VALID", name="pool") pooled_outputs.append(pooled) # Combine All Pooled Features num_filters_total = num_filters * len(filter_sizes) h_pool = tf.concat(pooled_outputs, 3) h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total]) # Dropout Layer with tf.name_scope("dropout"): keep_prob = tf.placeholder(tf.float32, name="keep_prob") h_drop = tf.nn.dropout(h_pool_flat, keep_prob) # Output Layer with tf.name_scope("output"): W = tf.Variable(tf.truncated_normal([num_filters_total, num_classes], stddev=0.1), name="W") b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b") scores = tf.nn.xw_plus_b(h_drop, W, b, name="scores") return scores, keep_prob ``` 接下来,我们可以定义训练函数。代码如下所示: ```python # 训练函数 def train(data_path, vocab_path, model_path, num_classes, vocab_size, max_length, embedding_size, filter_sizes, num_filters, batch_size, num_epochs, learning_rate): # 加载数据 labels, texts = convert_data_to_id(data_path, vocab_path, max_length) # 划分训练集和测试集 num_samples = len(labels) indices = np.random.permutation(num_samples) train_indices = indices[:int(num_samples * 0.8)] test_indices = indices[int(num_samples * 0.8):] train_labels = labels[train_indices] test_labels = labels[test_indices] train_texts = texts[train_indices] test_texts = texts[test_indices] # 定义模型 inputs = tf.placeholder(tf.int32, [None, max_length], name="inputs") labels = tf.placeholder(tf.int32, [None], name="labels") logits, keep_prob = cnn_model(inputs, num_classes, vocab_size, embedding_size, filter_sizes, num_filters) # 定义损失函数和优化器 with tf.name_scope("loss"): loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)) with tf.name_scope("optimizer"): optimizer = tf.train.AdamOptimizer(learning_rate) grads_and_vars = optimizer.compute_gradients(loss) train_op = optimizer.apply_gradients(grads_and_vars) # 定义评估指标 with tf.name_scope("accuracy"): correct_predictions = tf.equal(tf.argmax(logits, 1), tf.cast(labels, tf.int64)) accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32)) # 训练模型 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(num_epochs): train_loss = 0.0 train_acc = 0.0 num_batches = int(len(train_labels) / batch_size) for i in range(num_batches): batch_labels = train_labels[i * batch_size:(i + 1) * batch_size] batch_texts = train_texts[i * batch_size:(i + 1) * batch_size] _, batch_loss, batch_acc = sess.run([train_op, loss, accuracy], feed_dict={inputs: batch_texts, labels: batch_labels, keep_prob: 0.5}) train_loss += batch_loss train_acc += batch_acc train_loss /= num_batches train_acc /= num_batches test_loss, test_acc = sess.run([loss, accuracy], feed_dict={inputs: test_texts, labels: test_labels, keep_prob: 1.0}) print("Epoch %d: train_loss=%.4f, train_acc=%.4f, test_loss=%.4f, test_acc=%.4f" % (epoch + 1, train_loss, train_acc, test_loss, test_acc)) # 保存模型 saver = tf.train.Saver() saver.save(sess, model_path) ``` 最后,我们可以调用训练函数进行训练。代码如下所示: ```python data_path = 'THUCNews/THUCNews_train.txt' vocab_path = 'vocab.txt' model_path = 'model.ckpt' num_classes = 14 vocab_size = 50000 max_length = 200 embedding_size = 128 filter_sizes = [2, 3, 4] num_filters = 128 batch_size = 64 num_epochs = 10 learning_rate = 1e-3 # 构建词汇表 build_vocab(data_path, vocab_path, vocab_size) # 训练模型 train(data_path, vocab_path, model_path, num_classes, vocab_size, max_length, embedding_size, filter_sizes, num_filters, batch_size, num_epochs, learning_rate) ``` 这样,我们就完成了一个基于神经网络的THUCNews数据集文本分类的Python实现。

相关推荐

最新推荐

recommend-type

基于python的BP神经网络及异或实现过程解析

总的来说,这个基于Python的BP神经网络实现展示了如何用Python构建、训练和优化一个简单的神经网络模型。通过实例代码,我们可以理解BP神经网络的工作原理,并了解如何解决非线性问题,如异或。然而,实际应用中可能...
recommend-type

Python实现Keras搭建神经网络训练分类模型教程

在本教程中,我们将探讨如何使用Python中的Keras库构建神经网络分类模型。Keras是一个高级神经网络API,它构建在TensorFlow、Theano和CNTK等深度学习框架之上,提供了一个简洁而灵活的方式来构建和训练模型。 首先...
recommend-type

python构建深度神经网络(DNN)

本篇文章将深入探讨如何使用Python来实现一个简单的深度神经网络模型,用于识别手写数字,这是许多初学者入门深度学习的典型示例。 首先,我们需要获取和预处理数据。这里使用的数据集是MNIST,一个包含50,000个...
recommend-type

Python实现的径向基(RBF)神经网络示例

在Python中,我们可以使用numpy库来处理矩阵运算,实现RBF神经网络的关键部分。 在给出的代码片段中,可以看到一些关键的函数定义,如`gaussian`、`multiQuadric`和`invMultiQuadric`,它们分别代表高斯函数、多距...
recommend-type

基于神经网络优化pid参数的过程控制.doc

基于神经网络优化PID参数的过程控制 本文主要介绍基于神经网络优化PID参数的柴油机转速控制系统。该系统通过基于BP神经网络的PID控制器,自动在线修正PID参数,从而控制柴油机转速,提高控制效果。同时,文中还对...
recommend-type

基于Springboot的医院信管系统

"基于Springboot的医院信管系统是一个利用现代信息技术和网络技术改进医院信息管理的创新项目。在信息化时代,传统的管理方式已经难以满足高效和便捷的需求,医院信管系统的出现正是适应了这一趋势。系统采用Java语言和B/S架构,即浏览器/服务器模式,结合MySQL作为后端数据库,旨在提升医院信息管理的效率。 项目开发过程遵循了标准的软件开发流程,包括市场调研以了解需求,需求分析以明确系统功能,概要设计和详细设计阶段用于规划系统架构和模块设计,编码则是将设计转化为实际的代码实现。系统的核心功能模块包括首页展示、个人中心、用户管理、医生管理、科室管理、挂号管理、取消挂号管理、问诊记录管理、病房管理、药房管理和管理员管理等,涵盖了医院运营的各个环节。 医院信管系统的优势主要体现在:快速的信息检索,通过输入相关信息能迅速获取结果;大量信息存储且保证安全,相较于纸质文件,系统节省空间和人力资源;此外,其在线特性使得信息更新和共享更为便捷。开发这个系统对于医院来说,不仅提高了管理效率,还降低了成本,符合现代社会对数字化转型的需求。 本文详细阐述了医院信管系统的发展背景、技术选择和开发流程,以及关键组件如Java语言和MySQL数据库的应用。最后,通过功能测试、单元测试和性能测试验证了系统的有效性,结果显示系统功能完整,性能稳定。这个基于Springboot的医院信管系统是一个实用且先进的解决方案,为医院的信息管理带来了显著的提升。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具

![字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具](https://pic1.zhimg.com/80/v2-3fea10875a3656144a598a13c97bb84c_1440w.webp) # 1. 字符串转 Float 性能调优概述 字符串转 Float 是一个常见的操作,在数据处理和科学计算中经常遇到。然而,对于大规模数据集或性能要求较高的应用,字符串转 Float 的效率至关重要。本章概述了字符串转 Float 性能调优的必要性,并介绍了优化方法的分类。 ### 1.1 性能调优的必要性 字符串转 Float 的性能问题主要体现在以下方面
recommend-type

Error: Cannot find module 'gulp-uglify

当你遇到 "Error: Cannot find module 'gulp-uglify'" 这个错误时,它通常意味着Node.js在尝试运行一个依赖了 `gulp-uglify` 模块的Gulp任务时,找不到这个模块。`gulp-uglify` 是一个Gulp插件,用于压缩JavaScript代码以减少文件大小。 解决这个问题的步骤一般包括: 1. **检查安装**:确保你已经全局安装了Gulp(`npm install -g gulp`),然后在你的项目目录下安装 `gulp-uglify`(`npm install --save-dev gulp-uglify`)。 2. **配置
recommend-type

基于Springboot的冬奥会科普平台

"冬奥会科普平台的开发旨在利用现代信息技术,如Java编程语言和MySQL数据库,构建一个高效、安全的信息管理系统,以改善传统科普方式的不足。该平台采用B/S架构,提供包括首页、个人中心、用户管理、项目类型管理、项目管理、视频管理、论坛和系统管理等功能,以提升冬奥会科普的检索速度、信息存储能力和安全性。通过需求分析、设计、编码和测试等步骤,确保了平台的稳定性和功能性。" 在这个基于Springboot的冬奥会科普平台项目中,我们关注以下几个关键知识点: 1. **Springboot框架**: Springboot是Java开发中流行的应用框架,它简化了创建独立的、生产级别的基于Spring的应用程序。Springboot的特点在于其自动配置和起步依赖,使得开发者能快速搭建应用程序,并减少常规配置工作。 2. **B/S架构**: 浏览器/服务器模式(B/S)是一种客户端-服务器架构,用户通过浏览器访问服务器端的应用程序,降低了客户端的维护成本,提高了系统的可访问性。 3. **Java编程语言**: Java是这个项目的主要开发语言,具有跨平台性、面向对象、健壮性等特点,适合开发大型、分布式系统。 4. **MySQL数据库**: MySQL是一个开源的关系型数据库管理系统,因其高效、稳定和易于使用而广泛应用于Web应用程序,为平台提供数据存储和查询服务。 5. **需求分析**: 开发前的市场调研和需求分析是项目成功的关键,它帮助确定平台的功能需求,如用户管理、项目管理等,以便满足不同用户群体的需求。 6. **数据库设计**: 数据库设计包括概念设计、逻辑设计和物理设计,涉及表结构、字段定义、索引设计等,以支持平台的高效数据操作。 7. **模块化设计**: 平台功能模块化有助于代码组织和复用,包括首页模块、个人中心模块、管理系统模块等,每个模块负责特定的功能。 8. **软件开发流程**: 遵循传统的软件生命周期模型,包括市场调研、需求分析、概要设计、详细设计、编码、测试和维护,确保项目的质量和可维护性。 9. **功能测试、单元测试和性能测试**: 在开发过程中,通过这些测试确保平台功能的正确性、模块的独立性和系统的性能,以达到预期的用户体验。 10. **微信小程序、安卓源码**: 虽然主要描述中没有详细说明,但考虑到标签包含这些内容,可能平台还提供了移动端支持,如微信小程序和安卓应用,以便用户通过移动设备访问和交互。 这个基于Springboot的冬奥会科普平台项目结合了现代信息技术和软件工程的最佳实践,旨在通过信息化手段提高科普效率,为用户提供便捷、高效的科普信息管理服务。