转化为paddlepaddle2.2.2代码:def safe_invert_gains(image, rgb_gain, red_gain, blue_gain): """Inverts gains while safely handling saturated pixels.""" image = image.permute(1, 2, 0) # Permute the image tensor to HxWxC format from CxHxW format gains = torch.stack((1.0 / red_gain, torch.tensor([1.0]), 1.0 / blue_gain)) / rgb_gain gains = gains.squeeze() gains = gains[None, None, :] # Prevents dimming of saturated pixels by smoothly masking gains near white. gray = torch.mean(image, dim=-1, keepdim=True) inflection = 0.9 mask = (torch.clamp(gray - inflection, min=0.0) / (1.0 - inflection)) ** 2.0 safe_gains = torch.max(mask + (1.0 - mask) * gains, gains) out = image * safe_gains out = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format return out

时间: 2024-02-18 20:04:45 浏览: 28
以下是将上述代码转换为PaddlePaddle 2.2.2的代码: ``` import paddle import paddle.nn.functional as F def safe_invert_gains(image, rgb_gain, red_gain, blue_gain): """Inverts gains while safely handling saturated pixels.""" image = paddle.transpose(image, perm=[1, 2, 0]) # Permute the image tensor to HxWxC format from CxHxW format gains = paddle.stack((1.0 / red_gain, paddle.to_tensor([1.0]), 1.0 / blue_gain)) / rgb_gain gains = paddle.squeeze(gains) gains = gains.unsqueeze(0).unsqueeze(0) # Prevents dimming of saturated pixels by smoothly masking gains near white. gray = paddle.mean(image, axis=-1, keepdim=True) inflection = 0.9 mask = (F.relu(gray - inflection, inplace=True) / (1.0 - inflection)) ** 2.0 safe_gains = paddle.maximum(mask + (1.0 - mask) * gains, gains) out = image * safe_gains out = paddle.transpose(out, perm=[2, 0, 1]) # Re-Permute the tensor back to CxHxW format return out ``` 需要注意的是,PaddlePaddle中的API与PyTorch不完全一致,因此需要对代码做一些调整。主要包括: 1. 将torch转换为paddle。 2. 将permute函数转换为transpose函数,并调整参数格式。 3. 将torch.mean函数转换为paddle.mean,并调整参数格式。 4. 将torch.clamp函数转换为F.relu函数,并调整参数格式。 5. 将torch.max函数转换为paddle.maximum函数。 需要注意的是,在PaddlePaddle中,使用inplace=True时需要用F.relu等函数来代替。

相关推荐

最新推荐

recommend-type

NOKIA_手机软件测试 测试用例

1.1.6 为特定语言定做的功能 4 1.1.7 附件 4 1.2 手机的软件结构 4 1.3 手机的硬件结构 5 1.4 Nokia手机相关知识 6 1.4.1 Project Line of Nokia 6 2 测试基础 7 2.1 测试与开发 7 2.1.1 软件开发的一般流程 7 2.1.2...
recommend-type

openflow_nox_openvswitch平台资料总结文档

2.2.2 openflow 控制器 8 2.2.3 openflow 虚拟化 8 2.3 安全通道 9 2.3.1 OF协议 9 2.3.2 建立连接 10 2.3.3 连接中断 11 2.3.4 加密 11 2.3.5 生成树 11 第三章 实验环境搭建 11 3.1 安装open vswitch 12 3.1.1 ...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。用递归方法解决

这个问题可以使用递归方法解决。下面是一个思路: 1. 定义一个函数,接收三个参数:n、m、i,表示还剩下n个人,每次数到m时出列,当前报数的人是i; 2. 如果n=1,返回i,即最后留下的那个人的编号; 3. 否则,计算出下一个出列的人的编号j,通过递归调用函数解决n-1个人的问题,其结果为k; 4. 如果k < j,即当前i之后出列的人的编号为k,需要将k转换为在i之前出列的编号,返回值为 k+(n-1); 5. 如果k>=j,即当前i之后出列的人的编号为k,返回值为 k-(j-1); 下面是对应的Python代码: ```python def josephus(n, m, i):