dfa最简化代码c++
时间: 2023-10-16 12:32:06 浏览: 151
以下是一个用C语言实现DFA最小化的示例代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#define STATES 6
#define SYMBOLS 2
int transition[STATES][SYMBOLS] = {
{1, 2},
{1, 3},
{4, 2},
{1, 5},
{4, 2},
{4, 5}
};
bool is_final[STATES] = {false, true, false, true, true, true};
int find_group(int state, int groups[][STATES]) {
for (int i = 0; i < STATES; i++) {
for (int j = 0; j < STATES; j++) {
if (groups[i][j] == state) {
return i;
}
}
}
return -1;
}
bool is_same_group(int state1, int state2, int groups[][STATES]) {
int group1 = find_group(state1, groups);
int group2 = find_group(state2, groups);
return group1 == group2;
}
void print_groups(int groups[][STATES], int num_groups) {
for (int i = 0; i < num_groups; i++) {
printf("Group %d: ", i+1);
for (int j = 0; j < STATES; j++) {
if (groups[i][j] != -1) {
printf("%d ", groups[i][j]);
}
}
printf("\n");
}
}
void minimize_dfa() {
int groups[STATES][STATES] = {{0}};
int num_groups = 0;
for (int i = 0; i < STATES; i++) {
groups[0][i] = i;
}
num_groups++;
// Divide states into final and non-final groups
int final_group[STATES], non_final_group[STATES];
int num_final = 0, num_non_final = 0;
for (int i = 0; i < STATES; i++) {
if (is_final[i]) {
final_group[num_final++] = i;
} else {
non_final_group[num_non_final++] = i;
}
}
groups[1][0] = final_group[0];
groups[2][0] = non_final_group[0];
num_groups = 3;
// Continue dividing the groups until no more changes occur
bool changed = true;
while (changed) {
changed = false;
int new_groups[STATES][STATES] = {{-1}};
int new_num_groups = 0;
for (int i = 0; i < num_groups; i++) {
for (int j = 0; j < STATES; j++) {
if (groups[i][j] == -1) {
break;
}
int group_index = -1;
for (int k = 0; k < new_num_groups; k++) {
if (is_same_group(groups[i][j], new_groups[k][0], groups)) {
group_index = k;
break;
}
}
if (group_index == -1) {
group_index = new_num_groups++;
new_groups[group_index][0] = groups[i][j];
} else {
changed = true;
}
for (int k = 0; k < SYMBOLS; k++) {
int next_state = transition[groups[i][j]][k];
if (next_state == -1) {
continue;
}
if (!is_same_group(next_state, new_groups[group_index][0], groups)) {
new_groups[group_index][new_groups[group_index][0] == -1 ? 0 : ++new_groups[group_index][0]] = next_state;
changed = true;
}
}
}
}
for (int i = 0; i < new_num_groups; i++) {
for (int j = 0; j < STATES; j++) {
groups[i][j] = new_groups[i][j];
}
}
num_groups = new_num_groups;
}
// Print the final minimized DFA
printf("Minimized DFA:\n");
for (int i = 0; i < num_groups; i++) {
int state = groups[i][0];
printf("State %d: ", i+1);
for (int j = 0; j < SYMBOLS; j++) {
int next_state = transition[state][j];
if (next_state == -1) {
printf("- ");
continue;
}
printf("%d ", find_group(next_state, groups) + 1);
}
printf("%s\n", is_final[state] ? "(final)" : "");
}
printf("\n");
// Print the groups
printf("Groups:\n");
print_groups(groups, num_groups);
}
int main() {
minimize_dfa();
return 0;
}
```
该代码的主要思路是将DFA状态分组,然后根据状态转移表来判断哪些状态应该被分为同一组。在每次迭代中,将当前分组中的状态按照其下一个状态所在的组进行重新分组,直到没有状态发生更改为止。最后,将每个组作为一个新的状态,并生成最小化的DFA状态转移表。
阅读全文