elmo 为什么用的是两层单向的LSTM 而不是bi-LSTM?
时间: 2023-11-10 17:48:44 浏览: 184
基于pytorch从头实现了单向,多层,双向LSTM,给出了完整使用代码,并与torch自带的LSTM进行了对比实验
5星 · 资源好评率100%
ELMo(Embeddings from Language Models)是一个基于深度双向语言模型(Deep Bidirectional Language Model,简称 BiLM)的词向量表示方法。ELMo使用两层单向LSTM作为BiLM的基本结构,而不是使用常见的双向LSTM。
这是因为双向LSTM在处理序列时会同时考虑正向和反向的信息,这可以帮助提取更全面、更准确的特征。但双向LSTM的计算量更大,而且在一些任务上可能过于强大,导致过拟合等问题。
相比之下,ELMo使用两个单向LSTM分别从左到右和从右到左处理输入序列,并利用它们的输出来计算每个位置的词向量表示。这种方法可以减少计算量,避免过拟合,同时还能够利用上下文中的信息来提取更好的特征。
总之,ELMo之所以使用两层单向LSTM而不是双向LSTM,是为了在保证模型效果的同时降低计算复杂度和过拟合的风险。
阅读全文