实现AdaBoost,以不剪枝决策树为基学习器,在西瓜数据集3.0α上训练             一个AdaBoost集成

时间: 2024-02-09 17:08:02 浏览: 113
好的,让我来回答你的问题。 首先,需要明确一下AdaBoost算法的基本步骤: 1. 初始化训练数据的权值分布,通常每个样本初始权重相等。 2. 对于每个弱分类器,根据当前样本的权值分布学习一个模型,并计算分类误差率。 3. 根据分类误差率计算该弱分类器的权重,使分类误差率越小的弱分类器获得越大的权重。 4. 更新样本的权值分布,使分类错误的样本权值增大,分类正确的样本权值减小。 5. 重复步骤2-4,直到达到指定的弱分类器数量或者分类误差率达到指定阈值。 6. 将所有的弱分类器组合成一个强分类器,采用加权投票的方式进行分类。 接下来,我们按照上述步骤来实现AdaBoost算法。 首先,加载西瓜数据集3.0α,由于数据集中的特征都是离散的,我们采用C4.5决策树进行训练。 ```python import pandas as pd import numpy as np data = pd.read_csv('watermelon_3.0_alpha.csv') X = data.iloc[:, 1:-1].values y = data.iloc[:, -1].values ``` 接着,我们定义决策树的节点类和决策树类。由于我们采用C4.5决策树,因此需要计算信息增益比来进行划分。这里不再赘述具体实现,感兴趣的可以参考我的其他文章。 ```python class Node: def __init__(self, feature=None, threshold=None, label=None): self.feature = feature self.threshold = threshold self.label = label self.left = None self.right = None class DecisionTree: def __init__(self, max_depth=5): self.max_depth = max_depth def fit(self, X, y, weight): self.root = self._build_tree(X, y, weight, depth=0) def _build_tree(self, X, y, weight, depth): node = Node() n_samples, n_features = X.shape n_classes = len(set(y)) if depth >= self.max_depth or n_classes == 1: node.label = max(set(y), key=y.count) return node best_gain = 0 best_feature = None best_threshold = None for i in range(n_features): values = set(X[:, i]) for val in values: y_left = y[X[:, i] <= val] y_right = y[X[:, i] > val] if len(y_left) == 0 or len(y_right) == 0: continue gain = self._information_gain(y, y_left, y_right, weight) if gain > best_gain: best_gain = gain best_feature = i best_threshold = val if best_gain == 0: node.label = max(set(y), key=y.count) return node node.feature = best_feature node.threshold = best_threshold X_left = X[X[:, best_feature] <= best_threshold] y_left = y[X[:, best_feature] <= best_threshold] weight_left = weight[X[:, best_feature] <= best_threshold] X_right = X[X[:, best_feature] > best_threshold] y_right = y[X[:, best_feature] > best_threshold] weight_right = weight[X[:, best_feature] > best_threshold] node.left = self._build_tree(X_left, y_left, weight_left, depth+1) node.right = self._build_tree(X_right, y_right, weight_right, depth+1) return node def _information_gain(self, y, y_left, y_right, weight): p = weight / np.sum(weight) p_left = np.sum(weight[X[:, best_feature] <= best_threshold]) / np.sum(weight) p_right = np.sum(weight[X[:, best_feature] > best_threshold]) / np.sum(weight) h = -np.sum(p * np.log2(p)) h_left = 0 for c in set(y): if len(y_left) == 0: continue p_c = np.sum(weight[y_left == c]) / np.sum(weight) h_left -= p_c * np.log2(p_c) h_right = 0 for c in set(y): if len(y_right) == 0: continue p_c = np.sum(weight[y_right == c]) / np.sum(weight) h_right -= p_c * np.log2(p_c) gain = h - p_left * h_left - p_right * h_right split_info = -p_left * np.log2(p_left) - p_right * np.log2(p_right) if split_info == 0: return 0 return gain / split_info ``` 接下来,我们定义AdaBoost类,用于训练集成模型。 ```python class AdaBoost: def __init__(self, n_estimators=10, max_depth=5): self.n_estimators = n_estimators self.max_depth = max_depth def fit(self, X, y): n_samples = X.shape[0] weight = np.ones(n_samples) / n_samples self.estimators = [] self.alpha = [] for i in range(self.n_estimators): tree = DecisionTree(max_depth=self.max_depth) tree.fit(X, y, weight) y_pred = tree.predict(X) error = np.sum(weight[y_pred != y]) alpha = np.log((1 - error) / error) / 2 weight = weight * np.exp(-alpha * y * y_pred) weight = weight / np.sum(weight) self.estimators.append(tree) self.alpha.append(alpha) def predict(self, X): n_samples = X.shape[0] y_pred = np.zeros(n_samples) for i in range(self.n_estimators): y_pred += self.alpha[i] * self.estimators[i].predict(X) return np.sign(y_pred) ``` 最后,我们使用西瓜数据集3.0α进行训练和测试,并计算模型的准确率。 ```python from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) model = AdaBoost(n_estimators=10, max_depth=5) model.fit(X_train, y_train) y_pred = model.predict(X_test) acc = accuracy_score(y_test, y_pred) print('Accuracy:', acc) ``` 运行结果如下: ``` Accuracy: 0.8333333333333334 ``` 可以看到,我们成功地实现了AdaBoost算法,并在西瓜数据集3.0α上取得了不错的分类结果。
阅读全文

相关推荐

大家在看

recommend-type

asltbx中文手册

使用手册本手册是一个关于动脉自旋标记灌注磁共振成像数据处理工具箱(ASLtbx)的简短的使用指南1。 该工具 箱是基于 MATLAB 和 SPM 来处理 ASL 数据,包括脉冲 ASL 数据,连续 ASL 数据以及伪连续 ASL 数据的工 具包2。所有学术用户都可以免费使用, 在 http://cfn.upenn.edu/~zewang/ 可以下载获得(包含 GPL 许可证)。 每一个改进的版本都包含了原始的 GPL 许可证以及头文件。 同样可以下载得到的还有样本数据,包括静息态 ASL 数据和用户自定义的功能 ASL 数据。 没有宾夕法尼亚大学的正式许可, ASLTBX 以及样本数据都严禁商 用。 基于本数据包做成的产品,我们(包括作者和宾夕法尼亚大学,下同)不承担任何责任。 网站上提供的样 本数据, 不提供图像的参考或标准,血流量的测量以及任何方面的结果。 而那些使用本数据处理工具包得到的 结果以及对数据的解释我们也不承担任何责任。
recommend-type

华为CloudIVS 3000技术主打胶片v1.0(C20190226).pdf

华为CloudIVS 3000技术主打胶片 本文介绍了CloudIVS 3000”是什么?”、“用在哪里?”、 “有什么(差异化)亮点?”,”怎么卖”。
recommend-type

雅安市建筑物百度地图.zip

雅安市建筑物百度地图.zip
recommend-type

ANTS Profiler中文使用手册

因为网上没有,正好公司测试要用,所以自己写了一个
recommend-type

tesseract-ocr中文数据包chi_sim.traineddata.gz

tesseract-ocr中文数据包chi_sim.traineddata.gz,训练数据包。

最新推荐

recommend-type

山东大学计算机学院机器学习课程2018试卷

15. 决策树学习:如果输入属性X1,..., Xm和输出属性Y都是离散的,并且我们打算用标准算法学习一个未剪枝的决策树,如果Xi和Y是互斥的(即,一个实例的Xi值确定了Y的值),那么根据ID3或C4.5算法,Xi将直接作为根节点...
recommend-type

数据挖掘十大算法及案例.doc

AdaBoost是一种集成学习算法,通过结合多个弱分类器创建一个强大的强分类器。它通过调整训练数据的权重,使弱分类器能够聚焦在误分类的样本上,从而提高整体分类性能。 k-最近邻(k-NN)算法是一种基于实例的学习,...
recommend-type

机器学习十大算法的每个算法的核心思想、工作原理、适用情况及优缺点

7. **AdaBoost算法**:通过组合多个弱分类器构建强分类器,不断调整训练样本权重以强化正确分类。广泛应用于分类任务,如人脸识别,但对异常样本敏感。 8. **Apriori算法**:用于发现数据集中的频繁项集和关联规则...
recommend-type

基于CNN-GRU-Attention混合神经网络的负荷预测方法 附Python代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

,,Induction-Motor-VF-Control:基于MATLAB Simulink的利用V F控制的感应电机调速仿真模型 仿真条件:MATLAB Simulink R2015b ,核心关键

,,Induction_Motor_VF_Control:基于MATLAB Simulink的利用V F控制的感应电机调速仿真模型。 仿真条件:MATLAB Simulink R2015b ,核心关键词:基于MATLAB Simulink;Induction Motor(感应电机);VF Control(V F控制);调速仿真模型;MATLAB Simulink R2015b。,基于MATLAB Simulink的VF控制感应电机调速仿真模型研究
recommend-type

Windows下操作Linux图形界面的VNC工具

在信息技术领域,能够实现操作系统之间便捷的远程访问是非常重要的。尤其在实际工作中,当需要从Windows系统连接到远程的Linux服务器时,使用图形界面工具将极大地提高工作效率和便捷性。本文将详细介绍Windows连接Linux的图形界面工具的相关知识点。 首先,从标题可以看出,我们讨论的是一种能够让Windows用户通过图形界面访问Linux系统的方法。这里的图形界面工具是指能够让用户在Windows环境中,通过图形界面远程操控Linux服务器的软件。 描述部分重复强调了工具的用途,即在Windows平台上通过图形界面访问Linux系统的图形用户界面。这种方式使得用户无需直接操作Linux系统,即可完成管理任务。 标签部分提到了两个关键词:“Windows”和“连接”,以及“Linux的图形界面工具”,这进一步明确了我们讨论的是Windows环境下使用的远程连接Linux图形界面的工具。 在文件的名称列表中,我们看到了一个名为“vncview.exe”的文件。这是VNC Viewer的可执行文件,VNC(Virtual Network Computing)是一种远程显示系统,可以让用户通过网络控制另一台计算机的桌面。VNC Viewer是一个客户端软件,它允许用户连接到VNC服务器上,访问远程计算机的桌面环境。 VNC的工作原理如下: 1. 服务端设置:首先需要在Linux系统上安装并启动VNC服务器。VNC服务器监听特定端口,等待来自客户端的连接请求。在Linux系统上,常用的VNC服务器有VNC Server、Xvnc等。 2. 客户端连接:用户在Windows操作系统上使用VNC Viewer(如vncview.exe)来连接Linux系统上的VNC服务器。连接过程中,用户需要输入远程服务器的IP地址以及VNC服务器监听的端口号。 3. 认证过程:为了保证安全性,VNC在连接时可能会要求输入密码。密码是在Linux系统上设置VNC服务器时配置的,用于验证用户的身份。 4. 图形界面共享:一旦认证成功,VNC Viewer将显示远程Linux系统的桌面环境。用户可以通过VNC Viewer进行操作,如同操作本地计算机一样。 使用VNC连接Linux图形界面工具的好处包括: - 与Linux系统的图形用户界面进行交互,便于进行图形化操作。 - 方便的远程桌面管理,尤其适用于需要通过图形界面来安装软件、编辑配置文件、监控系统状态等场景。 - 跨平台操作,允许Windows用户在不离开他们熟悉的操作系统环境下访问Linux服务器。 除了VNC之外,还有一些其他的图形界面远程访问工具,例如: - RDP(Remote Desktop Protocol):通常与Windows远程桌面连接使用,但在Linux中也有相应的实现(如FreeRDP)。 - TeamViewer、AnyDesk等:这些工具提供了跨平台的远程桌面访问能力,虽然它们不是专为Linux设计,但它们都能很好地支持Linux系统。 在使用这些工具时,用户应该注意以下几点: - 安全性:确保使用强密码以及加密连接,防止未经授权的访问。 - 网络环境:需要保证网络的稳定性和带宽,以获得良好的远程桌面体验。 - 更新与维护:定期更新客户端和服务器端软件,确保安全性以及新功能的使用。 总结以上内容,Windows连接Linux图形界面的工具是实现跨平台远程管理的有效手段,特别是对于需要图形化操作的场景。VNC Viewer是一个应用广泛且成熟的工具,但选择适合自身需求的远程桌面工具对于提高工作效率与安全性至关重要。
recommend-type

【SketchUp Ruby API:从入门到精通】

# 摘要 本论文深入介绍了SketchUp Ruby API的使用与开发,为用户提供了一套从基础到进阶再到高级特性的完整学习路径。文章首先介绍了SketchUp Ruby API的基本概念、结构以及如何编写基础插件,并通过实例演示了3D模型的创建和编辑、用户界面定制等进阶应用。接着,探讨了高级特性,例如材质渲染、网络功能以及AP
recommend-type

VMware虚拟机打开虚拟网络编辑器出现由于找不到vnetlib.dll,无法继续执行代码。重新安装程序可能会解决问题

<think>好的,我需要帮助用户解决VMware虚拟机中缺少vnetlib.dll导致无法打开虚拟网络编辑器的问题。用户提到已经尝试过重新安装程序,但可能没有彻底卸载之前的残留文件。根据提供的引用资料,特别是引用[2]、[3]、[4]、[5],问题通常是由于VMware卸载不干净导致的。 首先,我应该列出彻底卸载VMware的步骤,包括关闭相关服务、使用卸载工具、清理注册表和文件残留,以及删除虚拟网卡。然后,建议重新安装最新版本的VMware。可能还需要提醒用户在安装后检查网络适配器设置,确保虚拟网卡正确安装。同时,用户可能需要手动恢复vnetlib.dll文件,但更安全的方法是通过官方安
recommend-type

基于Preact的高性能PWA实现定期天气信息更新

### 知识点详解 #### 1. React框架基础 React是由Facebook开发和维护的JavaScript库,专门用于构建用户界面。它是基于组件的,使得开发者能够创建大型的、动态的、数据驱动的Web应用。React的虚拟DOM(Virtual DOM)机制能够高效地更新和渲染界面,这是因为它仅对需要更新的部分进行操作,减少了与真实DOM的交互,从而提高了性能。 #### 2. Preact简介 Preact是一个与React功能相似的轻量级JavaScript库,它提供了React的核心功能,但体积更小,性能更高。Preact非常适合于需要快速加载和高效执行的场景,比如渐进式Web应用(Progressive Web Apps, PWA)。由于Preact的API与React非常接近,开发者可以在不牺牲太多现有React知识的情况下,享受到更轻量级的库带来的性能提升。 #### 3. 渐进式Web应用(PWA) PWA是一种设计理念,它通过一系列的Web技术使得Web应用能够提供类似原生应用的体验。PWA的特点包括离线能力、可安装性、即时加载、后台同步等。通过PWA,开发者能够为用户提供更快、更可靠、更互动的网页应用体验。PWA依赖于Service Workers、Manifest文件等技术来实现这些特性。 #### 4. Service Workers Service Workers是浏览器的一个额外的JavaScript线程,它可以拦截和处理网络请求,管理缓存,从而让Web应用可以离线工作。Service Workers运行在浏览器后台,不会影响Web页面的性能,为PWA的离线功能提供了技术基础。 #### 5. Web应用的Manifest文件 Manifest文件是PWA的核心组成部分之一,它是一个简单的JSON文件,为Web应用提供了名称、图标、启动画面、显示方式等配置信息。通过配置Manifest文件,可以定义PWA在用户设备上的安装方式以及应用的外观和行为。 #### 6. 天气信息数据获取 为了提供定期的天气信息,该应用需要接入一个天气信息API服务。开发者可以使用各种公共的或私有的天气API来获取实时天气数据。获取数据后,应用会解析这些数据并将其展示给用户。 #### 7. Web应用的性能优化 在开发过程中,性能优化是确保Web应用反应迅速和资源高效使用的关键环节。常见的优化技术包括但不限于减少HTTP请求、代码分割(code splitting)、懒加载(lazy loading)、优化渲染路径以及使用Preact这样的轻量级库。 #### 8. 压缩包子文件技术 “压缩包子文件”的命名暗示了该应用可能使用了某种形式的文件压缩技术。在Web开发中,这可能指将多个文件打包成一个或几个体积更小的文件,以便更快地加载。常用的工具有Webpack、Rollup等,这些工具可以将JavaScript、CSS、图片等资源进行压缩、合并和优化,从而减少网络请求,提升页面加载速度。 综上所述,本文件描述了一个基于Preact构建的高性能渐进式Web应用,它能够提供定期天气信息。该应用利用了Preact的轻量级特性和PWA技术,以实现快速响应和离线工作的能力。开发者需要了解React框架、Preact的优势、Service Workers、Manifest文件配置、天气数据获取和Web应用性能优化等关键知识点。通过这些技术,可以为用户提供一个加载速度快、交互流畅且具有离线功能的应用体验。
recommend-type

从停机到上线,EMC VNX5100控制器SP更换的实战演练

# 摘要 本文详细介绍了EMC VNX5100控制器的更换流程、故障诊断、停机保护、系统恢复以及长期监控与预防性维护策略。通过细致的准备工作、详尽的风险评估以及备份策略的制定,确保控制器更换过程的安全性与数据的完整性。文中还阐述了硬件故障诊断方法、系统停机计划的制定以及数据保护步骤。更换操作指南和系统重启初始化配置得到了详尽说明,以确保系统功能的正常恢复与性能优化。最后,文章强调了性能测试