发一段DDPG的matlab代码
时间: 2023-10-03 07:08:08 浏览: 207
DDPG控制二阶滞后系统MATLAB实现
DDPG算法是一种基于Actor-Critic架构的深度强化学习算法,下面是一个简单的DDPG算法的Matlab代码实现:
```matlab
% DDPG算法的matlab实现
% 算法流程:Actor-Critic架构+经验回放+延迟更新+目标网络
% 环境:Matlab R2020a
% 清空环境变量
clear all
close all
clc
% 参数设置
N = 1000; % 迭代次数
T = 100; % 每轮步数
gamma = 0.99; % 折扣因子
tau = 0.01; % 目标网络更新速率
buffer_size = 10000; % 经验回放缓存大小
batch_size = 32; % 每次训练的样本数
lr_actor = 1e-3; % Actor网络学习率
lr_critic = 1e-3; % Critic网络学习率
noise_std = 0.1; % 噪声标准差
% 环境设置
env = rlPredefinedEnv("Pendulum-Continuous");
% 状态和动作空间
state_dim = numel(env.ObservationInfo);
action_dim = numel(env.ActionInfo);
% Actor网络结构
actor_layers = [
imageInputLayer([1 1 state_dim],'Normalization','none','Name','state')
fullyConnectedLayer(128,'Name','FC1')
reluLayer('Name','Relu1')
fullyConnectedLayer(64,'Name','FC2')
reluLayer('Name','Relu2')
fullyConnectedLayer(action_dim,'Name','output')
tanhLayer('Name','tanh')];
actor_options = rlRepresentationOptions('LearnRate',lr_actor,'GradientThreshold',1);
% Critic网络结构
critic_layers = [
imageInputLayer([1 1 state_dim],'Normalization','none','Name','state')
fullyConnectedLayer(128,'Name','FC1')
reluLayer('Name','Relu1')
fullyConnectedLayer(64,'Name','FC2')
reluLayer('Name','Relu2')
fullyConnectedLayer(action_dim,'Name','FC3')
additionLayer(2,'Name','add')
reluLayer('Name','Relu3')
fullyConnectedLayer(1,'Name','output')];
critic_options = rlRepresentationOptions('LearnRate',lr_critic,'GradientThreshold',1);
% 创建Actor网络和Critic网络
actor = rlStochasticActorRepresentation(actor_layers,state_dim,action_dim,'Observation',{'state'},'Action',{'tanh'},actor_options);
critic = rlValueRepresentation(critic_layers,state_dim,action_dim,'Observation',{'state'},'Action',{'tanh'},critic_options);
% 创建DDPG智能体
agent = rlDDPGAgent(actor,critic);
agent.Options.DiscountFactor = gamma;
agent.Options.TargetSmoothFactor = tau;
% 创建经验回放缓存
buffer = rlReplayBuffer(buffer_size);
% 训练
for i = 1:N
% 重置环境
obs = env.reset();
% 初始化ep_reward
ep_reward = 0;
% 开始训练
for t = 1:T
% 获取动作
action = agent.getAction(obs);
% 添加噪声
noise = noise_std*randn(size(action));
action = action + noise;
% 执行动作
[next_obs,reward,done] = env.step(action);
% 计算当前ep_reward
ep_reward = ep_reward + reward;
% 存储经验
buffer.add(obs,action,reward,next_obs,done);
% 更新网络
if buffer.NumExperience >= batch_size
minibatch = buffer.getMiniBatch(batch_size);
agent = train(agent,minibatch);
end
% 更新状态
obs = next_obs;
% 判断是否结束
if done
break
end
end
% 输出结果
fprintf("Episode %d, Reward %d\n",i,ep_reward);
end
```
注意,上述代码中的状态空间和动作空间都是连续的,因此使用了tanh作为Actor网络的输出激活函数。如果状态空间和动作空间是离散的,需要修改网络结构和输出激活函数。
阅读全文