用于MATLAB的DDPG代码整定PID参数
时间: 2023-12-02 13:04:22 浏览: 108
DDPG(Deep Deterministic Policy Gradient)是一种深度强化学习算法,可以用于连续控制问题的解决。在MATLAB中,可以使用Deep Learning Toolbox中的函数以及Reinforcement Learning Toolbox中的函数来实现DDPG算法。
下面是一个使用DDPG算法来优化PID控制器参数的示例代码:
```matlab
%% 初始化环境
mdl = 'pendulum';
open_system(mdl);
Ts = 0.05;
Tf = 10;
obsInfo = rlNumericSpec([3 1],'LowerLimit',[-pi/2; -8; -Inf],'UpperLimit',[pi/2; 8; Inf]);
obsInfo.Name = 'observations';
obsInfo.Description = 'theta;thetadot;thetaerror';
actInfo = rlNumericSpec([1 1],'LowerLimit',-10,'UpperLimit',10);
actInfo.Name = 'torque';
env = rlSimulinkEnv(mdl,mdl,obsInfo,actInfo);
%% 确定深度神经网络的结构
statePath = [
imageInputLayer([3 1 1],'Normalization','none','Name','observation')
fullyConnectedLayer(64,'Name','CriticStateFC1')
reluLayer('Name','CriticRelu1')
fullyConnectedLayer(64,'Name','CriticStateFC2')];
actionPath = [
imageInputLayer([1 1 1],'Normalization','none','Name','action')
fullyConnectedLayer(64,'Name','CriticActionFC1','BiasLearnRateFactor',0)];
commonPath = [
additionLayer(2,'Name','add')
reluLayer('Name','CriticCommonRelu')
fullyConnectedLayer(1,'Name','output')];
criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');
%% 建立深度决策网络
actorNetwork = [
imageInputLayer([3 1 1],'Normalization','none','Name','observation')
fullyConnectedLayer(64,'Name','ActorFC1')
reluLayer('Name','ActorRelu1')
fullyConnectedLayer(64,'Name','ActorFC2')
reluLayer('Name','ActorRelu2')
fullyConnectedLayer(1,'Name','ActorFC3')
tanhLayer('Name','ActorTanh1')
scalingLayer('Name','ActorScaling1','Scale',2)];
%% 设置DDPG代理
agentOpts = rlDDPGAgentOptions;
agentOpts.SampleTime = Ts;
agentOpts.DiscountFactor = 0.99;
agentOpts.MiniBatchSize = 256;
agentOpts.ExperienceBufferLength = 1e6;
agentOpts.TargetSmoothFactor = 1e-3;
agentOpts.NoiseOptions.Variance = 0.2;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;
agentOpts.SaveExperienceBufferWithAgent = true;
agentOpts.ResetExperienceBufferBeforeTraining = false;
agentOpts.UseParallel = false;
agentOpts.UseGPU = false;
agent = rlDDPGAgent(actorNetwork,criticNetwork,agentOpts);
%% 训练代理
trainOpts = rlTrainingOptions;
trainOpts.MaxEpisodes = 100;
trainOpts.MaxStepsPerEpisode = ceil(Tf/Ts);
trainOpts.StopTrainingCriteria = 'AverageReward';
trainOpts.StopTrainingValue = -400;
trainOpts.ScoreAveragingWindowLength = 30;
trainOpts.SaveAgentCriteria = 'EpisodeReward';
trainOpts.SaveAgentValue = -350;
trainOpts.Plots = 'training-progress';
trainingStats = train(agent,env,trainOpts);
```
在这个示例中,我们使用了一个具有64个神经元的深度神经网络来近似Q函数,另一个具有64个神经元的深度神经网络来确定actor的策略。我们还设置了一些DDPG代理的选项,如样本时间、折扣因子、噪声参数等。
在训练代理之后,我们可以使用以下代码来测试代理的性能,并使用优化的PID参数控制摆杆系统:
```matlab
agentOpts.NoiseOptions.Variance = 0;
simOpts = rlSimulationOptions('MaxSteps',1000);
experience = sim(env,agent,simOpts);
```
这段代码将关闭DDPG代理的噪声,并使用优化的PID参数控制摆杆系统。
阅读全文