用torch中的DataLoader划分文本数据集,并将数据集打印成txt文件
时间: 2023-06-14 11:06:58 浏览: 104
python torch.utils.data.DataLoader使用方法
首先,需要将文本数据集转换为数字序列。可以使用torchtext库来完成这个过程。以下是一个示例代码,将文本数据集转换为数字序列:
```python
import torchtext
from torchtext.datasets import language_modeling
# 定义数据集
train_data, val_data, test_data = language_modeling.WikiText2.splits(
path="data/", # 数据集路径
train="train.txt", # 训练集文件名
validation="valid.txt", # 验证集文件名
test="test.txt" # 测试集文件名
)
# 构建词汇表
text = train_data.examples[0].text
MAX_VOCAB_SIZE = 10000 # 词汇表大小
tokenizer = torchtext.data.utils.get_tokenizer("basic_english") # 分词器
train_data.fields["text"].build_vocab(
train_data,
max_size=MAX_VOCAB_SIZE,
tokenizer=tokenizer
)
# 将文本序列化为数字序列
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_size = 32
train_iter, val_iter, test_iter = language_modeling.BPTTIterator.splits(
(train_data, val_data, test_data),
batch_size=batch_size,
device=device,
bptt_len=35, # 每个序列的长度
repeat=False,
shuffle=True
)
```
接下来,可以使用DataLoader来划分数据集并将数据集打印成txt文件。以下是一个示例代码:
```python
from torch.utils.data import DataLoader
# 定义DataLoader
train_loader = DataLoader(train_iter, batch_size=1, shuffle=False)
val_loader = DataLoader(val_iter, batch_size=1, shuffle=False)
test_loader = DataLoader(test_iter, batch_size=1, shuffle=False)
# 打印训练集
with open("train.txt", "w", encoding="utf-8") as f:
for batch in train_loader:
for i in range(batch.text.shape[1]):
word_id = batch.text[0,i].item()
word = train_data.fields["text"].vocab.itos[word_id]
f.write(word + " ")
f.write("\n")
# 打印验证集
with open("val.txt", "w", encoding="utf-8") as f:
for batch in val_loader:
for i in range(batch.text.shape[1]):
word_id = batch.text[0,i].item()
word = train_data.fields["text"].vocab.itos[word_id]
f.write(word + " ")
f.write("\n")
# 打印测试集
with open("test.txt", "w", encoding="utf-8") as f:
for batch in test_loader:
for i in range(batch.text.shape[1]):
word_id = batch.text[0,i].item()
word = train_data.fields["text"].vocab.itos[word_id]
f.write(word + " ")
f.write("\n")
```
这段代码将训练集、验证集和测试集分别打印成了train.txt、val.txt和test.txt三个文件。每行是一个序列,序列中的每个元素是一个单词。
阅读全文