import numpy as np import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense, Flatten, Conv1D, MaxPooling1D # 生成正弦函数数据 x = np.linspace(0, 100, 1000) y = np.sin(2*x) # 将数据转换为卷积神经网络需要的格式 X = np.zeros((len(x), 10)) for i in range(len(x)): for j in range(10): X[i][j] = y[(i+j)%len(x)] X = np.reshape(X, (X.shape[0], X.shape[1], 1)) # 构建卷积神经网络模型 model = Sequential() model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(10,1))) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(100, activation='relu')) model.add(Dense(1, activation='linear')) # 打印模型结构 model.summary() # 编译模型 model.compile(loss='mse', optimizer='adam') # 训练模型并可视化损失函数 history = model.fit(X, y, epochs=100, batch_size=32, validation_split=0.2) loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(1, len(loss)+1) plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() # 预测并可视化结果 y_pred = model.predict(X) plt.plot(x, y, label='true') plt.plot(x, y_pred, label='predict') plt.legend() plt.show()修改在这段代码,使卷积层特征图可视化

时间: 2024-01-09 18:05:31 浏览: 30
要可视化卷积层的特征图,需要在模型中添加一个新的输出层,输出卷积层的特征图。具体步骤如下: 1. 在模型中添加一个新的输出层,输出卷积层的特征图。 ```python from keras.models import Model layer_outputs = [layer.output for layer in model.layers[:2]] activation_model = Model(inputs=model.input, outputs=layer_outputs) ``` 2. 输入数据并获取卷积层的特征图。 ```python activations = activation_model.predict(X) first_layer_activation = activations[0] ``` 3. 可视化卷积层的特征图。 ```python import matplotlib.pyplot as plt plt.matshow(first_layer_activation[0, :, :, 0], cmap='viridis') plt.show() ``` 将以上代码添加到原有代码中,即可可视化第一层卷积层的特征图。如果需要可视化其他卷积层的特征图,只需要修改代码中的层索引即可。
相关问题

如何绕开from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense这些库,我的python无法调用这些库

如果你无法使用 `tensorflow.keras` 库中的模块,你可以尝试使用其他深度学习框架,例如PyTorch或CNTK,或者使用更基础的Python库来手动实现这些层的功能。 以下是一个使用基础Python库手动实现CNN模型的示例: ```python import numpy as np import matplotlib.pyplot as plt # 定义卷积层 def conv1d(x, w, b, stride=1, padding=0): n, c, l = x.shape f, c, k = w.shape p = padding out_l = int(np.floor((l + 2*p - k) / stride)) + 1 # 对输入数据进行padding x_pad = np.pad(x, ((0,0),(0,0),(p,p)), 'constant') # 定义输出 out = np.zeros((n, f, out_l)) # 卷积计算 for i in range(out_l): x_window = x_pad[:, :, (i*stride):(i*stride+k)] for j in range(f): out[:,j,i] = np.sum(x_window * w[j,:,:], axis=(1,2)) + b[j] return out # 定义max pooling层 def max_pool1d(x, pool_size=2, stride=None): n, c, l = x.shape if stride is None: stride = pool_size out_l = int(np.floor((l - pool_size) / stride)) + 1 # 定义输出 out = np.zeros((n, c, out_l)) # pooling计算 for i in range(out_l): x_window = x[:, :, (i*stride):(i*stride+pool_size)] out[:,:,i] = np.max(x_window, axis=2) return out # 定义全连接层 def linear(x, w, b): return np.dot(x, w) + b # 定义ReLU激活函数 def relu(x): return np.maximum(0, x) # 生成正弦函数数据 x = np.linspace(0, 50, 500) y = np.sin(x) # 将数据变为3D张量 X = y.reshape(-1, 500, 1) # 定义模型参数 W1 = np.random.randn(32, 1, 3) b1 = np.zeros((32,)) W2 = np.random.randn(64, 32, 3) b2 = np.zeros((64,)) W3 = np.random.randn(256, 64) b3 = np.zeros((256,)) W4 = np.random.randn(1, 256) b4 = np.zeros((1,)) # 定义模型 def model(X): out = conv1d(X, W1, b1, stride=1, padding=0) out = relu(out) out = max_pool1d(out, pool_size=2, stride=None) out = conv1d(out, W2, b2, stride=1, padding=0) out = relu(out) out = max_pool1d(out, pool_size=2, stride=None) out = out.reshape((-1, 256)) out = linear(out, W3, b3) out = relu(out) out = linear(out, W4, b4) return out # 定义损失函数和优化器 def mse_loss(pred, target): return np.mean(np.square(pred - target)) def sgd_optimizer(grads, lr=0.01): for param, grad in grads: param -= lr * grad # 训练模型 epochs = 50 batch_size = 16 lr = 0.01 num_batches = X.shape[0] // batch_size for epoch in range(epochs): for i in range(num_batches): X_batch = X[i*batch_size:(i+1)*batch_size] y_batch = y[i*batch_size:(i+1)*batch_size] # 前向传播 pred = model(X_batch) loss = mse_loss(pred, y_batch) # 反向传播 grads = [] dL_dy = 2 * (pred - y_batch) / batch_size grads.append((W4, np.dot(model(X_batch).T, dL_dy))) grads.append((b4, np.sum(dL_dy, axis=0, keepdims=True))) dL_dx = np.dot(dL_dy, W4.T) dL_dx = relu(dL_dx) grads.append((W3, np.dot(model(X_batch).T, dL_dx))) grads.append((b3, np.sum(dL_dx, axis=0, keepdims=True))) dL_dx = dL_dx.reshape((-1, 64, 4)) dL_dx = max_pool1d(dL_dx, pool_size=2, stride=None) dL_dx = dL_dx.reshape((-1, 256)) dL_dx = relu(dL_dx) grads.append((W2, np.dot(max_pool1d(model(X_batch), pool_size=2, stride=None).T, dL_dx))) grads.append((b2, np.sum(dL_dx, axis=0, keepdims=True))) dL_dx = np.dot(dL_dx, W2.T) dL_dx = relu(dL_dx) grads.append((W1, np.dot(conv1d(X_batch, W1, b1, stride=1, padding=0).T, dL_dx))) grads.append((b1, np.sum(dL_dx, axis=0, keepdims=True))) # 更新模型参数 sgd_optimizer(grads, lr=lr) print('Epoch: {}, Loss: {:.4f}'.format(epoch+1, loss)) # 预测结果并可视化 y_pred = model(X).flatten() plt.plot(x, y, label='Ground Truth') plt.plot(x, y_pred, label='Predictions') plt.legend() plt.show() ``` 需要注意的是,这个示例代码仅仅是一个简单的实现,它可能不如 `tensorflow.keras` 库中的模块稳定或高效。如果你需要更复杂的模型或更高效的实现,建议考虑使用其他深度学习框架或尝试解决你的 `tensorflow.keras` 库调用问题。

import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import os from tensorflow import keras import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split from tensorflow.keras import Model from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense np.set_printoptions(threshold=np.inf) from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense from tensorflow.keras.utils import plot_model # 创建模型 model = Sequential() model.add(Conv2D(6, (3, 3), activation='relu', padding='same', input_shape=(3, 1024, 1))) model.add(Conv2D(16, (3, 3), activation='relu'), padding='same') model.add(MaxPooling2D((2, 2))) model.add(Dropout(0.1)) model.add(Flatten()) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(225, activation='sigmoid')) # 输出模型结构图表 plot_model(model, show_shapes=True) TypeError: add() got an unexpected keyword argument 'padding'

在第6行和第7行中,您的代码中有一些语法错误。请注意在第6行中,由于缺少右括号,导致第7行的参数被视为model.add()函数的参数,而不是Conv2D()函数的参数。此外,在第7行中,您意外地在Conv2D()函数的括号之外使用了一个逗号。因此,您可以将代码更改如下所示: ```python import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import os from tensorflow import keras import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split from tensorflow.keras import Model from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense np.set_printoptions(threshold=np.inf) from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense from tensorflow.keras.utils import plot_model # 创建模型 model = Sequential() model.add(Conv2D(6, (3, 3), activation='relu', padding='same', input_shape=(3, 1024, 1))) model.add(Conv2D(16, (3, 3), activation='relu', padding='same')) model.add(MaxPooling2D((2, 2))) model.add(Dropout(0.1)) model.add(Flatten()) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(225, activation='sigmoid')) # 输出模型结构图表 plot_model(model, show_shapes=True) ``` 请注意,在第6行和第7行中,我们已经修复了语法错误,并将输入参数放在正确的位置。现在,代码应该可以正常运行,输出模型结构图表。

相关推荐

下面的代码哪里有问题,帮我改一下from __future__ import print_function import numpy as np import tensorflow import keras from keras.models import Sequential from keras.layers import Dense,Dropout,Flatten from keras.layers import Conv2D,MaxPooling2D from keras import backend as K import tensorflow as tf import datetime import os np.random.seed(0) from sklearn.model_selection import train_test_split from PIL import Image import matplotlib.pyplot as plt from keras.datasets import mnist images = [] labels = [] (x_train,y_train),(x_test,y_test)=mnist.load_data() X = np.array(images) print (X.shape) y = np.array(list(map(int, labels))) print (y.shape) x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) print (x_train.shape) print (x_test.shape) print (y_train.shape) print (y_test.shape) ############################ ########## batch_size = 20 num_classes = 4 learning_rate = 0.0001 epochs = 10 img_rows,img_cols = 32 , 32 if K.image_data_format() =='channels_first': x_train =x_train.reshape(x_train.shape[0],1,img_rows,img_cols) x_test = x_test.reshape(x_test.shape[0],1,img_rows,img_cols) input_shape = (1,img_rows,img_cols) else: x_train = x_train.reshape(x_train.shape[0],img_rows,img_cols,1) x_test = x_test.reshape(x_test.shape[0],img_rows,img_cols,1) input_shape =(img_rows,img_cols,1) x_train =x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:',x_train.shape) print(x_train.shape[0],'train samples') print(x_test.shape[0],'test samples')

import numpy as np import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, Flatten from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.utils import np_utils from keras.datasets import mnist from keras import backend as K from keras.optimizers import Adam import skfuzzy as fuzz import pandas as pd from sklearn.model_selection import train_test_split # 绘制损失曲线 import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score data = pd.read_excel(r"D:\pythonProject60\filtered_data1.xlsx") # 读取数据文件 # Split data into input and output variables X = data.iloc[:, :-1].values y = data.iloc[:, -1].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 导入MNIST数据集 # 数据预处理 y_train = np_utils.to_categorical(y_train, 3) y_test = np_utils.to_categorical(y_test, 3) # 创建DNFN模型 model = Sequential() model.add(Dense(64, input_shape=(11,), activation='relu')) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(3, activation='softmax')) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['accuracy']) # 训练模型 history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=128) # 使用DNFN模型进行预测 y_pred = model.predict(X_test) y_pred= np.argmax(y_pred, axis=1) print(y_pred) # 计算模糊分类 fuzzy_pred = [] for i in range(len(y_pred)): fuzzy_class = np.zeros((3,)) fuzzy_class[y_pred[i]] = 1.0 fuzzy_pred.append(fuzzy_class) fuzzy_pred = np.array(fuzzy_pred) print(fuzzy_pred)获得其运行时间

帮我把下面这个代码从TensorFlow改成pytorch import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') sample_training_images, _ = next(train_data_gen) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(2, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) # 可视化训练结果 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) model.save("./model/timo_classification_128_maxPool2D_dense256.h5")

mport numpy as np import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, Flatten from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.utils import np_utils from keras.datasets import mnist from keras import backend as K from keras.optimizers import Adam import skfuzzy as fuzz import pandas as pd from sklearn.model_selection import train_test_split # 绘制损失曲线 import matplotlib.pyplot as plt import time from sklearn.metrics import accuracy_score data = pd.read_excel(r"D:\pythonProject60\filtered_data1.xlsx") # 读取数据文件 # Split data into input and output variables X = data.iloc[:, :-1].values y = data.iloc[:, -1].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 导入MNIST数据集 # 数据预处理 y_train = np_utils.to_categorical(y_train, 3) y_test = np_utils.to_categorical(y_test, 3) # 创建DNFN模型 start_time=time.time() model = Sequential() model.add(Dense(64, input_shape=(11,), activation='relu')) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(3, activation='softmax')) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['accuracy']) # 训练模型 history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=128) # 使用DNFN模型进行预测 y_pred = model.predict(X_test) y_pred= np.argmax(y_pred, axis=1) print(y_pred) # 计算模糊分类 fuzzy_pred = [] for i in range(len(y_pred)): fuzzy_class = np.zeros((3,)) fuzzy_class[y_pred[i]] = 1.0 fuzzy_pred.append(fuzzy_class) fuzzy_pred = np.array(fuzzy_pred) end_time = time.time() print("Total time taken: ", end_time - start_time, "seconds")获得运行结果并分析

zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

最新推荐

recommend-type

基于springboot+vue+MySQL实现的在线考试系统+源代码+文档

web期末作业设计网页 基于springboot+vue+MySQL实现的在线考试系统+源代码+文档
recommend-type

318_面向物联网机器视觉的目标跟踪方法设计与实现的详细信息-源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

FPGA Verilog 计算信号频率,基础时钟100Mhz,通过锁相环ip核生成200Mhz检测时钟,误差在10ns

结合等精度测量原理和原理示意图可得:被测时钟信号的时钟频率fx的相对误差与被测时钟信号无关;增大“软件闸门”的有效范围或者提高“标准时钟信号”的时钟频率fs,可以减小误差,提高测量精度。 实际闸门下被测时钟信号周期数为X,设被测信号时钟周期为Tfx,它的时钟频率fx = 1/Tfx,由此可得等式:X * Tfx = X / fx = Tx(实际闸门)。 其次,将两等式结合得到只包含各自时钟周期计数和时钟频率的等式:X / fx = Y / fs = Tx(实际闸门),等式变换,得到被测时钟信号时钟频率计算公式:fx = X * fs / Y。 最后,将已知量标准时钟信号时钟频率fs和测量量X、Y带入计算公式,得到被测时钟信号时钟频率fx。
recommend-type

校园二手商品交易系统三.wmv

校园二手商品交易系统三.wmv
recommend-type

基于Spring Security的OAuth2.1和OIDC1.0认证服务器设计源码

本源码提供了一个基于Spring Security框架的OAuth2.1和OIDC1.0认证服务器实现。项目包含102个文件,主要使用Java(51个文件)、JSP(12个文件)、XML(10个文件)、HTML(9个文件)等编程语言和标记语言开发。此外,还包括了properties、txt、ddl、css、ico等格式的文件。这个认证服务器项目旨在实现现代的身份验证和授权机制,支持OAuth 2.1和OpenID Connect 1.0协议,适用于需要在应用程序中实现安全认证的开发者。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。