旅行售货员问题要求用分支限界法实现算法c++

时间: 2023-12-14 16:04:04 浏览: 34
旅行售货员问题是NP完全问题中的一个经典问题,其目的是在给定一组城市和它们之间的距离矩阵的情况下,求出一条经过每个城市恰好一次的最短路径。而分支限界法是一种搜索算法,它可以通过剪枝来减少搜索空间,从而提高搜索效率。下面是使用C++实现旅行售货员问题的分支限界算法的代码: ```c++ #include <iostream> #include <vector> #include <queue> #include <algorithm> #include <limits> using namespace std; // 旅行售货员问题结构体 struct TSP { vector<vector<int>> dist; // 城市之间的距离矩阵 int n; // 城市数量 int min_cost; // 最小花费 vector<int> path; // 最小花费下的路径 }; // 结点结构体 struct Node { int level; // 结点所在层数(当前访问的城市编号) int cost; // 到达当前城市的花费 vector<int> path; // 到达当前城市的路径 bool visited[20]; // 标记已经访问过的城市 double bound; // 当前结点的花费下界 bool operator<(const Node& other) const { // 重载小于号,用于STL最小堆排序 return bound < other.bound; } }; // 计算结点的花费下界 double calc_bound(const TSP& tsp, Node& node) { double bound = node.cost; int level = node.level; // 计算已经访问过的城市到未访问过的城市的最小距离和 for (int i = 0; i < tsp.n; i++) { if (!node.visited[i]) { int min_dist = numeric_limits<int>::max(); for (int j = 0; j < tsp.n; j++) { if (i != j && node.visited[j]) { min_dist = min(min_dist, tsp.dist[j][i]); } } bound += min_dist; } } return bound; } // 分支限界法求解旅行售货员问题 void tsp(TSP& tsp) { // 初始化根结点 Node root = {0, 0, vector<int>(1, 0), {true}, 0}; root.bound = calc_bound(tsp, root); // 初始化最小堆 priority_queue<Node> Q; Q.push(root); // 开始搜索 while (!Q.empty()) { Node cur = Q.top(); Q.pop(); if (cur.bound >= tsp.min_cost) { // 当前结点的花费下界大于等于已经找到的最小花费,剪枝 continue; } if (cur.level == tsp.n - 1) { // 已经访问了所有城市 cur.cost += tsp.dist[cur.path.back()][0]; if (cur.cost < tsp.min_cost) { // 更新最小花费 tsp.min_cost = cur.cost; tsp.path = cur.path; } continue; } // 分别考虑从当前城市出发访问所有未访问过的城市的情况 for (int i = 1; i < tsp.n; i++) { if (!cur.visited[i]) { Node child = cur; child.level++; child.cost += tsp.dist[child.path.back()][i]; child.path.push_back(i); child.visited[i] = true; child.bound = calc_bound(tsp, child); if (child.bound < tsp.min_cost) { // 只将花费下界小于最小花费的子结点加入最小堆中 Q.push(child); } } } } } int main() { TSP tsp = {{ {0, 10, 15, 20}, {10, 0, 35, 25}, {15, 35, 0, 30}, {20, 25, 30, 0} }, 4, numeric_limits<int>::max(), {0}}; tsp(tsp); cout << "Min Cost: " << tsp.min_cost << endl; cout << "Path: "; for (int i : tsp.path) { cout << i << "->"; } cout << "0" << endl; return 0; } ``` 在这个代码中,我们定义了一个`TSP`结构体来存储旅行售货员问题的信息,包括城市之间的距离矩阵、城市数量、最小花费和最小花费下的路径。在`Node`结构体中,我们使用一个布尔数组来标记已经访问过的城市,还重载了小于号运算符,这是为了让我们可以使用STL的最小堆来维护搜索结点的优先级。 在`calc_bound`函数中,我们计算了当前结点的花费下界,这是通过贪心的思路来计算的。具体来说,我们首先计算已经访问过的城市到未访问过的城市的最小距离和,然后将当前花费加上这个最小距离和,从而得到当前结点的花费下界。 在`tsp`函数中,我们使用了一个最小堆来维护搜索结点的优先级。在每一次循环中,我们取出最小堆中的顶部结点,然后根据当前结点的状态进行分支限界搜索。具体来说,我们分别考虑从当前城市出发访问所有未访问过的城市的情况,然后计算子结点的花费下界,并将符合条件的子结点压入最小堆中。如果当前结点的花费下界大于等于已经找到的最小花费,则可以剪枝,继续搜索下一个结点。如果已经访问了所有城市,则更新最小花费和最小花费下的路径。 最后,在`main`函数中,我们定义了一个简单的旅行售货员问题实例,然后调用`tsp`函数求解,最终输出结果。 希望这个解答能够帮助到您!

相关推荐

最新推荐

recommend-type

装载问题-分支限界算法-java实现

本例采用java编写的装载问题,采用的是FIFO队列形式,参考:算法设计与分析
recommend-type

c++旅行售货员问题源代码

好不容易收集到的资源,给大家分享一下,好不容易收集到的资源,给大家分享一下
recommend-type

动态规划法、贪心算法、回溯法、分支限界法解决0-1背包

1) 动态规划法求解问题的一般思路,动态规划法求解本问题的思路及其C/C++程序实现与算法的效率分析。...4) 分支限界法求解问题的一般思路,分支限界法求解本问题的思路及其C/C++程序实现与算法的效率分析。 有代码!!
recommend-type

装载问题(分支限界法)报告.doc

算法设计与分析实验报告,附已通过源码,供学习参考,共勉♪ 目录摘要如下: 1.问题描述 2.实验目的 3.实验原理 4.实验设计 (包括输入格式、算法、输出格式) 5.实验结果与分析 (除了截图外,实验结果还用...
recommend-type

动态规划法,回溯法,分支限界法求解TSP旅行商问题

本报告仅供参考,不足之处请指正,版权由博主所有,未经同意禁止应用于非法用途,请下载者自觉。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。