uvm1.2 支持 starting_phase 吗

时间: 2024-03-28 19:37:04 浏览: 270
Starting_phase 是 UVM 1.1 版本中引入的一个特性,在 UVM 1.2 中已经不再支持。在 UVM 1.2 中,可以使用 UVM_PHASE_SCHEDULE 中的 PHASE_SCHEDULED 代替 starting_phase。请注意,UVM 1.2 是 UVM 1.1 的升级版本,因此可以在 UVM 1.2 中使用 UVM 1.1 的代码,但是建议尽量使用 UVM 1.2 提供的新特性和改进。
相关问题

UVM1.2 中 如何让PHASE_SCHEDULED 替换starting_phase

UVM 1.2 中没有 `PHASE_SCHEDULED`,但是你可以使用 `uvm_phase` 中的 `phase_started` 方法来代替 `starting_phase`。具体方法如下: 1. 创建一个新的 `uvm_phase` 变量,例如 `my_phase`。 2. 在实例化 UVM 组件时,将 `my_phase` 作为 `uvm_component` 的 `default_phase` 参数传递。 3. 在 `my_phase` 的 `phase_started` 方法中执行需要在 `starting_phase` 中执行的操作。 以下是示例代码: ``` class my_phase extends uvm_phase; // 在这里执行需要在 starting_phase 中执行的操作 virtual function void phase_started(uvm_phase phase); // your code here endfunction endclass // 实例化 UVM 组件 class my_component extends uvm_component; // 将 my_phase 作为 default_phase 参数传递 function new(string name, uvm_component parent); super.new(name, parent); my_phase phase = new("my_phase", this); phase.set_phase_type(UVM_RUNTIME_PHASE); phase.phase_done.connect(parent.phase_all_done); phase.phase_started.connect(phase, "phase_started"); set_default_phase(phase); endfunction endclass ``` 在上面的示例代码中,我们创建了一个名为 `my_phase` 的新 `uvm_phase` 变量,并在其中重写了 `phase_started` 方法。在 `my_component` 类中,我们将 `my_phase` 作为 `default_phase` 参数传递给 `uvm_component` 的构造函数。这样,在实例化 `my_component` 时,`my_phase` 将成为默认的 UVM 运行时阶段。

uvm中的starting_phase的作用

在UVM中,starting_phase是一个特殊的阶段,该阶段是用于执行测试的初始化操作的。该阶段在测试开始执行之前运行,负责执行各种预处理和初始化工作,如创建和配置测试环境、实例化各个组件、分配和初始化存储资源等。在该阶段中,还可以向其他组件发送消息,以便它们在后续的阶段中执行相应的操作。总之,starting_phase的作用是确保测试执行的准备工作已经完成,并为后续的测试阶段提供必要的支持和准备。
阅读全文

相关推荐

class vbase_test extends uvm_test; uvm_component_utils(vbase_test) env m_env; vseqr m_vseqr; int unsigned simSeed; function new(string name, uvm_component parent); super.new(name, parent); endfunction : new extern function void build_phase (uvm_phase phase); extern function void connect_phase (uvm_phase phase); extern task reset_phase(uvm_phase phase); extern task reset_reg_model(); extern function void end_of_elaboration_phase(uvm_phase phase); extern function void start_of_simulation_phase(uvm_phase phase); extern task main_phase(uvm_phase phase); // report test result extern virtual function void report_phase(uvm_phase phase); endclass : vbase_test function void vbase_test::build_phase (uvm_phase phase); super.build_phase(phase); m_env = env::type_id::create(.name("m_env"), .parent(this)); // virtual sequencer m_vseqr = vseqr::type_id::create(.name("m_vseqr"), .parent(this)); uvm_config_db# (uvm_object_wrapper)::set(this,"m_vseqr.main_phase","default_sequence",vBaseSeq::type_id::get()); //uvm_config_db# (uvm_object_wrapper)::set(this,"m_vseqr.main_phase","default_sequence",vUniBaseSeq#()::type_id::get()); endfunction : build_phase function void vbase_test::connect_phase (uvm_phase phase); m_vseqr.p_rm = m_env.m_reg_model; m_vseqr.i2c_seqr = m_env.m_i2c_agent.m_seqr; endfunction : connect_phase task vbase_test::reset_phase(uvm_phase phase); //uvm_info(get_type_name(), {"REGISTER MODEL:\n", m_reg_model.sprint()}, UVM_MEDIUM) reset_reg_model(); super.reset_phase(phase); endtask task vbase_test::reset_reg_model(); forever begin wait (tb_top.reset_n == 0); m_env.m_reg_model.reset(); uvm_info(get_type_name(), "Reseting Complete", UVM_MEDIUM) wait (tb_top.reset_n == 1); end endtask function void vbase_test::end_of_elaboration_phase(uvm_phase phase); int handle; $system("rm -rf TEST_RUNNING"); simSeed = $get_initial_random_seed(); handle = $fopen($psprintf("TEST_RUNNING_%0d",simSeed),"w"); $fclose(handle); handle = $fopen("caseSeed","w"); $fwrite(handle,"%0d",simSeed); $fclose(handle); if($test$plusargs("uvm_tree")) uvm_top.print_topology(); endfunction : end_of_elaboration_phase function void vbase_test::start_of_simulation_phase(uvm_phase phase); uvm_info(get_type_name(), {"start of simulation for ", get_full_name()}, UVM_HIGH); endfunction : start_of_simulation_phase task vbase_test::main_phase(uvm_phase phase); phase.phase_done.set_drain_time(this, 200ns); endtask : main_phase // report test result function void vbase_test::report_phase(uvm_phase phase); uvm_report_server server; int handle; int unsigned err_num; super.report_phase(phase); server = get_report_server(); err_num = (server.get_severity_count(UVM_ERROR) + server.get_severity_count(UVM_FATAL)); simSeed = $get_initial_random_seed(); $display("\n********************************************************************************************\n"); if (err_num != 0) begin $display("TEST CASE FAILED!!!"); handle = $fopen($psprintf("TEST_FAILED_%0d",simSeed),"w"); end else begin $display("TEST CASE PASSED!!!"); handle = $fopen($psprintf("TEST_PASSED_%0d",simSeed),"w"); end $fclose(handle); $display("\n********************************************************************************************\n"); $system("rm -rf TEST_RUNNING*"); endfunction endif

最新推荐

recommend-type

UVM_PHASE执行顺序

- - `run_phase`:这是UVM验证的主要运行阶段,包含了一系列子阶段。 - `pre_reset_phase`:在重置信号发出之前执行,用于进行重置前的准备工作。 - `reset_phase`:处理重置信号,执行组件在重置期间需要完成的...
recommend-type

UVM_Class_Reference_Manual_1.2.pdf

这个1.2版本的类参考手册是工程师在理解和使用UVM时的重要参考资料,特别适合查询关于UVM中的phase和其他相关组件的详细信息。 UVM的核心是其面向对象的设计,它提供了一套预定义的类库,用于构建可重用的验证组件...
recommend-type

Universal Verification Methodology (UVM) 1.2 Class Reference

UVM 1.2 类参考指南 UVM(Universal Verification Methodology,通用验证方法论)是一种基于 SystemVerilog 的验证方法论,旨在提高验证的效率和可靠性。UVM 1.2 是 UVM 的一个主要版本,其 Class Reference 指南为...
recommend-type

pcie_test_suite_svt_uvm_user_guide.pdf

《PCIe测试套件SVT-UVM用户指南》是Synopsys公司发布的一份关于验证连续体(Verification Continuum)的VC Verification IP PCIe测试套件的用户手册,该手册适用于UVM(Universal Verification Methodology)环境。...
recommend-type

YOLOv3-训练-修剪.zip

YOLOv3-训练-修剪YOLOv3-训练-修剪的Python3.6、Pytorch 1.1及以上,numpy>1.16,tensorboard=1.13以上YOLOv3的训练参考[博客](https://blog.csdn.net/qq_34795071/article/details/90769094 )基于的ultralytics/yolov3代码大家也可以看下这个https://github.com/tanluren/yolov3-channel-and-layer-pruning正常训练(基线)python train.py --data data/VHR.data --cfg cfg/yolov3.cfg --weights/yolov3.weights --epochs 100 --batch-size 32 #后面的epochs自行更改 直接加载weights可以更好的收敛剪枝算法介绍本代码基于论文Learning Efficient Convolutional Networks Through Network Slimming (ICCV
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。