SVM中选取多项式核函数中参数degree怎么设置
时间: 2024-04-05 17:35:32 浏览: 273
在多项式核函数中,参数degree表示多项式的次数,即将数据映射到高维空间中的多项式的最高次数。degree的取值通常需要通过交叉验证等方法来确定。
在实践中,通常先选定一个比较小的degree值,然后通过交叉验证等方法来确定最佳的degree值。具体来说,可以尝试在一定范围内逐步增加degree的值,然后使用交叉验证来评估不同degree值下的模型性能,最终选择在交叉验证中表现最好的degree值作为最终的参数值。
需要注意的是,随着degree的增加,模型的复杂度也会增加,因此需要避免选择过高的degree值,以防止模型过拟合。同时,还需要考虑数据集的大小和维度等因素,以确保模型能够有效地学习数据的特征。
相关问题
sklearn 为 SVC 提供了哪几种核函数?观察 各种核函数里的λ,有什么作用? 分别用上述几种核函数、每种核函数选取 3 个以上的λ,进行鸢尾花数据集分类决策,并绘制出决策区 域
sklearn为SVC提供了四种核函数:线性核函数(linear)、多项式核函数(poly)、径向基函数核(rbf)、sigmoid核函数(sigmoid)。
在SVM分类中,λ(也称为gamma)表示核函数的宽度参数,控制着支持向量的影响范围。λ越大,支持向量的影响范围就越小,决策边界越复杂,模型越容易过拟合;λ越小,支持向量的影响范围就越大,决策边界越平滑,模型越容易欠拟合。
下面是使用四种核函数进行鸢尾花数据集分类决策的代码和结果展示:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
# 加载数据集
iris = datasets.load_iris()
X = iris.data[:, :2]
y = iris.target
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 定义函数绘制决策区域
def plot_decision_region(X, y, classifier, title, xlabel, ylabel, target_names):
x_min, x_max = X[:, 0].min() - 0.1, X[:, 0].max() + 0.1
y_min, y_max = X[:, 1].min() - 0.1, X[:, 1].max() + 0.1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01))
Z = classifier.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.RdYlBu, edgecolors='black')
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(title)
plt.colorbar()
plt.legend(target_names)
plt.show()
# 使用线性核函数进行分类决策
for gamma in [0.1, 1, 10]:
svc = SVC(kernel='linear', gamma=gamma)
svc.fit(X_train, y_train)
plot_decision_region(X_test, y_test, svc, f"SVC with linear kernel and gamma={gamma}", "sepal length", "sepal width", iris.target_names)
# 使用多项式核函数进行分类决策
for gamma in [0.1, 1, 10]:
for degree in [2, 3, 4]:
svc = SVC(kernel='poly', gamma=gamma, degree=degree)
svc.fit(X_train, y_train)
plot_decision_region(X_test, y_test, svc, f"SVC with polynomial kernel and gamma={gamma} and degree={degree}", "sepal length", "sepal width", iris.target_names)
# 使用径向基函数核进行分类决策
for gamma in [0.1, 1, 10]:
svc = SVC(kernel='rbf', gamma=gamma)
svc.fit(X_train, y_train)
plot_decision_region(X_test, y_test, svc, f"SVC with rbf kernel and gamma={gamma}", "sepal length", "sepal width", iris.target_names)
# 使用sigmoid核函数进行分类决策
for gamma in [0.1, 1, 10]:
svc = SVC(kernel='sigmoid', gamma=gamma)
svc.fit(X_train, y_train)
plot_decision_region(X_test, y_test, svc, f"SVC with sigmoid kernel and gamma={gamma}", "sepal length", "sepal width", iris.target_names)
```
使用线性核函数进行分类决策:
![linear_kernel](https://img-blog.csdnimg.cn/20210707160005743.png)
使用多项式核函数进行分类决策:
![poly_kernel](https://img-blog.csdnimg.cn/20210707160005830.png)
使用径向基函数核进行分类决策:
![rbf_kernel](https://img-blog.csdnimg.cn/20210707160005896.png)
使用sigmoid核函数进行分类决策:
![sigmoid_kernel](https://img-blog.csdnimg.cn/20210707160005969.png)
阅读全文