如何使用np.vectorize提高c = dist / 2 * (erf(x / (sigmax * np.sqrt(2))) - erf((x - Umean * t) / (sigmax * np.sqrt(2))))的计算速度?其中x是一个750*750的数组
时间: 2023-09-05 22:11:01 浏览: 96
MATLAB-函数帮助文档.docx
首先,可以将 c 的计算过程拆分成两个部分,即:
```python
c1 = erf(x / (sigmax * np.sqrt(2)))
c2 = erf((x - Umean * t) / (sigmax * np.sqrt(2)))
c = dist / 2 * (c1 - c2)
```
然后,使用 `np.vectorize` 函数对 `erf` 函数进行向量化:
```python
from scipy.special import erf
import numpy as np
def my_erf(x):
return erf(x)
vec_erf = np.vectorize(my_erf) # 将 erf 函数向量化
c1 = vec_erf(x / (sigmax * np.sqrt(2)))
c2 = vec_erf((x - Umean * t) / (sigmax * np.sqrt(2)))
c = dist / 2 * (c1 - c2)
```
这样,就可以使用 `vec_erf` 函数对 `erf` 函数进行 element-wise 运算,从而加速计算。
需要注意的是,`np.vectorize` 函数并不会真正地加速计算,其本质上还是一个 Python 函数,依然需要循环遍历数组中的每个元素。因此,在需要高效计算的场景中,最好使用 NumPy 中的 ufunc 函数。
阅读全文