#构建二叉树 def postfix_binary_tree(postfix,data): stack = Stack() for token in postfix: if token not in {'∧', '∨', '¬'}: cur= TreeNode(token) cur.print_tree(cur) cur_result = cur.evaluate_formula(cur,data) print("当前的真值为:",cur_result) stack.push(cur) else: left_node = None right_node = None if stack: right_node = stack.pop() if token != '¬': if stack: left_node = stack.pop() cur1 = TreeNode(token) cur1.left = left_node cur1.right = right_node cur1.print_tree(cur1) cur1_result=cur1.evaluate_formula(cur1,data) print("当前的真值为:",cur1_result) stack.push(cur1) tree = stack.pop() return tree
时间: 2024-02-14 13:20:07 浏览: 119
这段代码实现了根据后缀表达式构建二叉树的功能。具体实现过程如下:
1. 定义一个栈,用于存储节点。
2. 遍历后缀表达式中的每个元素。
3. 如果当前元素不是运算符,即为操作数,创建一个节点,并将其压入栈中。
4. 如果当前元素是运算符,弹出栈顶的两个节点作为左右子节点,创建一个新节点,并将其作为根节点,左右子节点分别指向弹出的两个节点。将新节点压入栈中。
5. 重复步骤2-4,直到后缀表达式的所有元素都被扫描完毕。
6. 最后栈中仅剩一个节点,即为构建的二叉树的根节点。
其中,TreeNode类表示二叉树节点,包括节点值、左右子节点和节点的打印和求值方法;Stack类表示栈,包括压栈、弹栈和判断栈是否为空的方法。
需要注意的是,在代码中调用了节点的 evaluate_formula 方法,用于计算节点的真值。该方法需要传入一个字典 data,表示变量的取值情况。例如,如果变量 x 的取值为 True,则 data 字典中应该包含键值对 {'x': True}。
另外,代码中的运算符集合 {'∧', '∨', '¬'} 表示逻辑运算符 and、or、not。
相关问题
这是上题的代码:def infix_to_postfix(expression): precedence = {'!': 3, '&': 2, '|': 1, '(': 0} op_stack = [] postfix_list = [] token_list = expression.split() for token in token_list: if token.isalnum(): postfix_list.append(token) elif token == '(': op_stack.append(token) elif token == ')': top_token = op_stack.pop() while top_token != '(': postfix_list.append(top_token) top_token = op_stack.pop() else: # operator while op_stack and precedence[op_stack[-1]] >= precedence[token]: postfix_list.append(op_stack.pop()) op_stack.append(token) while op_stack: postfix_list.append(op_stack.pop()) return ' '.join(postfix_list) class Node: def __init__(self, value): self.value = value self.left_child = None self.right_child = None def build_expression_tree(postfix_expr): operator_stack = [] token_list = postfix_expr.split() for token in token_list: if token.isalnum(): node = Node(token) operator_stack.append(node) else: right_node = operator_stack.pop() left_node = operator_stack.pop() node = Node(token) node.left_child = left_node node.right_child = right_node operator_stack.append(node) return operator_stack.pop() def evaluate_expression_tree(node, variable_values): if node.value.isalnum(): return variable_values[node.value] else: left_value = evaluate_expression_tree(node.left_child, variable_values) right_value = evaluate_expression_tree(node.right_child, variable_values) if node.value == '!': return not left_value elif node.value == '&': return left_value and right_value elif node.value == '|': return left_value or right_value expression = "!a & (b | c)" postfix_expression = infix_to_postfix(expression) expression_tree = build_expression_tree(postfix_expression) variable_values = {'a': True, 'b': False, 'c': True} result = evaluate_expression_tree(expression_tree, variable_values) print(result)
好的,感谢提供代码。以下是针对你的问题的解答:
1. 打印二叉树构造过程
在 build_expression_tree 函数中,operator_stack 列表存储了构建二叉树的过程。我们可以在函数中添加打印语句来查看二叉树构建过程。
代码如下:
```
def build_expression_tree(postfix_expr):
operator_stack = []
token_list = postfix_expr.split()
for token in token_list:
if token.isalnum():
node = Node(token)
operator_stack.append(node)
else:
right_node = operator_stack.pop()
left_node = operator_stack.pop()
node = Node(token)
node.left_child = left_node
node.right_child = right_node
operator_stack.append(node)
# 打印二叉树构建过程
print([i.value for i in operator_stack])
return operator_stack.pop()
```
在运行 build_expression_tree 函数时,将会打印出二叉树构建过程。
2. 打印后缀表达式和二叉树后序遍历序列
在函数 infix_to_postfix 中,postfix_list 列表存储了后缀表达式。我们可以在函数返回后缀表达式的同时,打印出后缀表达式。
代码如下:
```
def infix_to_postfix(expression):
precedence = {'!': 3, '&': 2, '|': 1, '(': 0}
op_stack = []
postfix_list = []
token_list = expression.split()
for token in token_list:
if token.isalnum():
postfix_list.append(token)
elif token == '(':
op_stack.append(token)
elif token == ')':
top_token = op_stack.pop()
while top_token != '(':
postfix_list.append(top_token)
top_token = op_stack.pop()
else:
# operator
while op_stack and precedence[op_stack[-1]] >= precedence[token]:
postfix_list.append(op_stack.pop())
op_stack.append(token)
while op_stack:
postfix_list.append(op_stack.pop())
# 打印后缀表达式
print(f"后缀表达式:{' '.join(postfix_list)}")
return ' '.join(postfix_list)
def build_expression_tree(postfix_expr):
operator_stack = []
token_list = postfix_expr.split()
for token in token_list:
if token.isalnum():
node = Node(token)
operator_stack.append(node)
else:
right_node = operator_stack.pop()
left_node = operator_stack.pop()
node = Node(token)
node.left_child = left_node
node.right_child = right_node
operator_stack.append(node)
# 打印二叉树构建过程
print([i.value for i in operator_stack])
return operator_stack.pop()
expression = "!a & (b | c)"
postfix_expression = infix_to_postfix(expression)
expression_tree = build_expression_tree(postfix_expression)
# 打印二叉树后序遍历序列
print("二叉树后序遍历序列:", end="")
def postorder(node):
if node:
postorder(node.left_child)
postorder(node.right_child)
print(node.value, end=" ")
postorder(expression_tree)
print()
```
在运行程序时,将会先打印出后缀表达式,然后是构建二叉树的过程,最后打印出二叉树的后序遍历序列。
3. 打印二叉树评估过程
在 evaluate_expression_tree 函数中,我们可以添加打印语句来查看二叉树评估的过程。
代码如下:
```
def evaluate_expression_tree(node, variable_values):
if node.value.isalnum():
return variable_values[node.value]
else:
left_value = evaluate_expression_tree(node.left_child, variable_values)
right_value = evaluate_expression_tree(node.right_child, variable_values)
if node.value == '!':
result = not left_value
elif node.value == '&':
result = left_value and right_value
elif node.value == '|':
result = left_value or right_value
# 打印二叉树评估过程
print(f"节点 {node.value} 的值为 {result}")
return result
expression = "!a & (b | c)"
postfix_expression = infix_to_postfix(expression)
expression_tree = build_expression_tree(postfix_expression)
variable_values = {'a': True, 'b': False, 'c': True}
result = evaluate_expression_tree(expression_tree, variable_values)
print(result)
```
在运行程序时,将会先打印出后缀表达式,然后是构建二叉树的过程,接着会打印出二叉树评估的过程。
4. 显示公式真值表
可以通过遍历变量的所有取值,来计算表达式的真值表。
代码如下:
```
expression = "!a & (b | c)"
postfix_expression = infix_to_postfix(expression)
expression_tree = build_expression_tree(postfix_expression)
# 遍历变量的所有可能取值
variable_values = {'a': True, 'b': False, 'c': True}
variable_names = list(variable_values.keys())
print(" ".join(variable_names), expression)
for i in range(2**len(variable_names)):
values = [bool(int(x)) for x in bin(i)[2:].zfill(len(variable_names))]
variable_values = dict(zip(variable_names, values))
result = evaluate_expression_tree(expression_tree, variable_values)
print(" ".join([str(int(x)) for x in values]), int(result))
```
在运行程序时,将会先打印出后缀表达式,然后是构建二叉树的过程,接着会打印出真值表。
class TreeNode: def __init__(self, val=None, left=None, right=None): self.val = val self.left = left self.right = right def infix_to_postfix(infix): operators = {'(': 0, ')': 0, 'NOT': 1, 'AND': 2, 'OR': 3} stack = [] postfix = [] for token in infix: if token in operators: if token == '(': stack.append(token) elif token == ')': while stack[-1] != '(': postfix.append(stack.pop()) stack.pop() else: while stack and operators[stack[-1]] >= operators[token]: postfix.append(stack.pop()) stack.append(token) else: postfix.append(token) while stack: postfix.append(stack.pop()) return postfix def postfix_to_tree(postfix): stack = [] for token in postfix: if token in {'NOT', 'AND', 'OR'}: right = stack.pop() if token == 'NOT': stack.append(TreeNode('NOT', None, right)) else: left = stack.pop() stack.append(TreeNode(token, left, right)) else: stack.append(TreeNode(token)) return stack.pop() def evaluate(root, values): if root.val in values: return values[root.val] elif root.val == 'NOT': return not evaluate(root.right, values) elif root.val == 'AND': return evaluate(root.left, values) and evaluate(root.right, values) elif root.val == 'OR': return evaluate(root.left, values) or evaluate(root.right, values) def print_tree(root, level=0): if root: print_tree(root.right, level + 1) print(' ' * 4 * level + '->', root.val) print_tree(root.left, level + 1) infix = input('请输入命题演算公式:').split() postfix = infix_to_postfix(infix) root = postfix_to_tree(postfix) print('后缀表达式:', postfix) print('二叉树构造过程:') print_tree(root) print('真值表:') variables = list(set(filter(lambda x: x not in {'NOT', 'AND', 'OR'}, infix))) for values in itertools.product([True, False], repeat=len(variables)): values = dict(zip(variables, values)) result = evaluate(root, values) print(values, '->', result)其中有错误NameError: name 'itertools' is not defined。请修改
在代码的开头处添加`import itertools`即可解决该错误:
```
import itertools
class TreeNode:
def __init__(self, val=None, left=None, right=None):
self.val = val
self.left = left
self.right = right
def infix_to_postfix(infix):
operators = {'(': 0, ')': 0, 'NOT': 1, 'AND': 2, 'OR': 3}
stack = []
postfix = []
for token in infix:
if token in operators:
if token == '(':
stack.append(token)
elif token == ')':
while stack[-1] != '(':
postfix.append(stack.pop())
stack.pop()
else:
while stack and operators[stack[-1]] >= operators[token]:
postfix.append(stack.pop())
stack.append(token)
else:
postfix.append(token)
while stack:
postfix.append(stack.pop())
return postfix
def postfix_to_tree(postfix):
stack = []
for token in postfix:
if token in {'NOT', 'AND', 'OR'}:
right = stack.pop()
if token == 'NOT':
stack.append(TreeNode('NOT', None, right))
else:
left = stack.pop()
stack.append(TreeNode(token, left, right))
else:
stack.append(TreeNode(token))
return stack.pop()
def evaluate(root, values):
if root.val in values:
return values[root.val]
elif root.val == 'NOT':
return not evaluate(root.right, values)
elif root.val == 'AND':
return evaluate(root.left, values) and evaluate(root.right, values)
elif root.val == 'OR':
return evaluate(root.left, values) or evaluate(root.right, values)
def print_tree(root, level=0):
if root:
print_tree(root.right, level + 1)
print(' ' * 4 * level + '->', root.val)
print_tree(root.left, level + 1)
infix = input('请输入命题演算公式:').split()
postfix = infix_to_postfix(infix)
root = postfix_to_tree(postfix)
print('后缀表达式:', postfix)
print('二叉树构造过程:')
print_tree(root)
print('真值表:')
variables = list(set(filter(lambda x: x not in {'NOT', 'AND', 'OR'}, infix)))
for values in itertools.product([True, False], repeat=len(variables)):
values = dict(zip(variables, values))
result = evaluate(root, values)
print(values, '->', result)
```
阅读全文