optimize.curve_fit用法

时间: 2023-05-30 18:07:46 浏览: 246
PDF

14.Scipy调用curve_fit实现曲线拟合1

`optimize.curve_fit` 是一个用于拟合数据的函数。它可以通过拟合给定数据的函数来找到最佳的拟合曲线,从而得到函数的参数。 使用 `optimize.curve_fit` 需要两个参数: 1. 待拟合函数:这是一个 Python 函数,它将输入的自变量和函数参数作为输入,并返回一个因变量的值。函数的形式应该与你要拟合的数据的形式相匹配。 2. 拟合数据:这是一个包含输入自变量和因变量的数组。自变量和因变量应该以相同的形式出现。 `optimize.curve_fit` 返回两个值: 1. 拟合函数的参数:这是一个数组,包含了拟合函数的参数值。 2. 拟合函数的协方差矩阵:这是一个二维数组,它给出了拟合参数之间的相关性。 以下是一个示例代码: ```python import numpy as np from scipy import optimize # 定义待拟合函数 def func(x, a, b, c): return a * np.exp(-b * x) + c # 准备拟合数据 xdata = np.linspace(0, 4, 50) ydata = func(xdata, 2.5, 1.3, 0.5) ydata = ydata + 0.2 * np.random.normal(size=len(xdata)) # 使用 optimize.curve_fit 进行拟合 popt, pcov = optimize.curve_fit(func, xdata, ydata) # 打印拟合函数的参数值 print(popt) # 打印拟合函数的协方差矩阵 print(pcov) ``` 在上面的代码中,我们首先定义了待拟合的函数 `func`,接着准备了拟合数据 `xdata` 和 `ydata`,并使用 `optimize.curve_fit` 进行拟合。最后,我们打印了拟合函数的参数值和协方差矩阵。
阅读全文

相关推荐

import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit #position plt.close('all') data=np.loadtxt('DATAA (1).txt',delimiter=',') t=data[:,0] x=data[:,1] t = t[130:790] x = x[130:790] plt.figure() plt.plot(t,x) plt.xlabel('time') plt.ylabel('position') max_val=max(x) max_i=list(x).index(max_val) #position up plt.figure() t_up=t[:max_i] x_up=x[:max_i] plt.plot(t_up,x_up,'r*') def fit1(t,v0,a1,x0): return x0+v0t+0.5a1t**2 popt,pcov = curve_fit(fit1, t_up, x_up) plt.plot(t_up, fit1(t_up,popt),'k', linewidth=2) #position down plt.figure() t_down=t[max_i:] x_down=x[max_i:] plt.plot(t_down,x_down,'r') popt,pcov = curve_fit(fit1, t_down, x_down) plt.plot(t_down, fit1(t_down,popt),'k', linewidth=2) #velocity n1=20 data=[] delta=t[1]-t[0] for i in range (n1,len(t)-n1): deri=(x[i+n1]-x[i-n1])/(2n1delta) data.append(deri) v=np.array(data) t= t[n1:-n1] plt.figure() plt.plot(t,v,'r*') #velocity up plt.figure() t_up=t[:max_i-n1] v_up=v[:max_i-n1] plt.plot(t_up,v_up,'r*') def fit2(t,v0,a): return v0+at popt,pcov = curve_fit(fit2, t_up, v_up) plt.plot(t_up, fit2(t_up,popt),'k', linewidth=2) #velocity down plt.figure() t_down=t[max_i-n1:] v_down=v[max_i-n1:] plt.plot(t_down,v_down,'r') popt,pcov = curve_fit(fit2, t_down, v_down) plt.plot(t_down, fit2(t_down,popt),'k', linewidth=2) #acceleration n2=2 data2=[] for i in range (n2,len(v)-n2): deri=(v[i+n2]-v[i-n2])/(2n2delta) data2.append(deri) a=np.array(data2) t= t[n2:-n2] plt.figure() plt.plot(t,a,'r*') import statistics a_up_mean=statistics.mean(a[:max_i-n1-n2]) a_down_mean=statistics.mean(a[max_i-n1-n2:])出现这个错误ValueError: could not convert string to float: '0.008\t-1.2126E-4'如何改进。

最新推荐

recommend-type

Python图像处理之直线和曲线的拟合与绘制【curve_fit()应用】

下面我们将深入探讨 `curve_fit()` 的使用方法以及其在直线、二次曲线和三次曲线拟合中的应用。 首先,我们需要了解 `curve_fit()` 的基本用法。该函数接受两个主要参数:一个是用户定义的模型函数(在这种情况下是...
recommend-type

8种用Python实现线性回归的方法对比详解

3. **Optimize.curve_fit()**: 更具通用性的函数,允许用户自定义函数进行拟合,适用于线性和非线性模型。它通过最小二乘法寻找最佳参数,返回参数和协方差矩阵,可用于多元线性回归。 4. **numpy.linalg.lstsq()...
recommend-type

python 对任意数据和曲线进行拟合并求出函数表达式的三种解决方案

这里我们将探讨三种不同的解决方案:多项式拟合、使用`scipy.optimize.curve_fit`进行非线性拟合以及拟合高斯分布。这些方法可以帮助我们找到最接近给定数据的数学模型。 首先,**多项式拟合**是一种简单且常见的...
recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依