import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit #position plt.close('all') data=np.loadtxt('DATAA (1).txt',delimiter=',') t=data[:,0] x=data[:,1] t = t[130:790] x = x[130:790] plt.figure() plt.plot(t,x) plt.xlabel('time') plt.ylabel('position') max_val=max(x) max_i=list(x).index(max_val) #position up plt.figure() t_up=t[:max_i] x_up=x[:max_i] plt.plot(t_up,x_up,'r*') def fit1(t,v0,a1,x0): return x0+v0t+0.5a1t**2 popt,pcov = curve_fit(fit1, t_up, x_up) plt.plot(t_up, fit1(t_up,popt),'k', linewidth=2) #position down plt.figure() t_down=t[max_i:] x_down=x[max_i:] plt.plot(t_down,x_down,'r') popt,pcov = curve_fit(fit1, t_down, x_down) plt.plot(t_down, fit1(t_down,popt),'k', linewidth=2) #velocity n1=20 data=[] delta=t[1]-t[0] for i in range (n1,len(t)-n1): deri=(x[i+n1]-x[i-n1])/(2n1delta) data.append(deri) v=np.array(data) t= t[n1:-n1] plt.figure() plt.plot(t,v,'r*') #velocity up plt.figure() t_up=t[:max_i-n1] v_up=v[:max_i-n1] plt.plot(t_up,v_up,'r*') def fit2(t,v0,a): return v0+at popt,pcov = curve_fit(fit2, t_up, v_up) plt.plot(t_up, fit2(t_up,popt),'k', linewidth=2) #velocity down plt.figure() t_down=t[max_i-n1:] v_down=v[max_i-n1:] plt.plot(t_down,v_down,'r') popt,pcov = curve_fit(fit2, t_down, v_down) plt.plot(t_down, fit2(t_down,popt),'k', linewidth=2) #acceleration n2=2 data2=[] for i in range (n2,len(v)-n2): deri=(v[i+n2]-v[i-n2])/(2n2delta) data2.append(deri) a=np.array(data2) t= t[n2:-n2] plt.figure() plt.plot(t,a,'r*') import statistics a_up_mean=statistics.mean(a[:max_i-n1-n2]) a_down_mean=statistics.mean(a[max_i-n1-n2:])出现这个错误ValueError: could not convert string to float: '0.008\t-1.2126E-4'如何改进。

时间: 2023-07-14 21:14:14 浏览: 58
这个错误是因为在读取数据文件 'DATAA (1).txt' 时,出现了不能将字符串转换为浮点数的情况。可以使用以下方法排查问题: 1. 检查数据文件 'DATAA (1).txt' 是否存在非数字字符,例如空格、制表符等。 2. 确定数据文件中数字和非数字字符的分隔符是什么,然后在加载数据时使用正确的分隔符。 3. 如果上述步骤无法解决问题,可以尝试使用 pandas 库中的 read_csv 函数来加载数据,并通过设置参数来解决数据格式问题。 以下是使用 pandas 库加载数据的示例代码: ```python import pandas as pd data = pd.read_csv('DATAA (1).txt', delimiter='\t') t = data.iloc[:, 0] x = data.iloc[:, 1] # 接下来的代码和之前一样 ```
相关问题

import numpy as np import scipy as sp from scipy.optimize import leastsq import matplotlib.pyplot as plt %matplotlib inline

这段代码是在Python中利用NumPy、SciPy和Matplotlib等库进行数据分析和可视化的基本导入语句。其中,NumPy是Python中用于科学计算的基础库,提供了多维数组对象和各种数学函数;SciPy是基于NumPy的一种高级模块,提供了许多数学、科学和工程计算中常用的函数和工具;Matplotlib是Python中著名的绘图库,可用于创建各种类型的图形。leastsq函数是SciPy库中的一个非线性最小二乘函数,用于拟合数据。"%matplotlib inline"是Jupyter Notebook中的魔法命令,用于在Notebook中直接显示Matplotlib绘制的图形。

请解释import numpy as np from sklearn.model_selection import train_test_split import random from scipy.optimize import fsolve import matplotlib.pyplot as plt import heapq from tkinter import _flatten

这些是Python中导入相应的库或模块的语句。 - `import numpy as np`: 导入名为`numpy`的库,可以使用`np`作为它的别名,方便后续调用库中的函数、变量等。 - `from sklearn.model_selection import train_test_split`: 从`sklearn`库的`model_selection`模块中导入`train_test_split`函数,用于将数据集划分为训练集和测试集。 - `import random`: 导入Python自带的`random`库,用于生成随机数等操作。 - `from scipy.optimize import fsolve`: 从`scipy`库的`optimize`模块中导入`fsolve`函数,可以用于解决方程组问题。 - `import matplotlib.pyplot as plt`: 导入`matplotlib`库中用于绘图的子库`pyplot`,可以使用`plt`作为它的别名,方便后续进行绘图相关操作。 - `from tkinter import _flatten`: 从Python自带的`tkinter`库中导入名为`_flatten`的模块,可以用于将多维嵌套的列表或元组展开为一维列表。

相关推荐

请删除下面代码中的strike_range使其能够通过输入一组行权价格来绘制波动率微笑曲线import numpy as np from scipy.stats import norm from scipy.optimize import minimize import matplotlib.pyplot as plt def bs_option_price(S, K, r, q, sigma, T, option_type): d1 = (np.log(S/K) + (r - q + sigma**2/2) * T) / (sigma * np.sqrt(T)) d2 = d1 - sigma * np.sqrt(T) if option_type == 'call': Nd1 = norm.cdf(d1) Nd2 = norm.cdf(d2) option_price = S * np.exp(-q * T) * Nd1 - K * np.exp(-r * T) * Nd2 elif option_type == 'put': Nd1 = norm.cdf(-d1) Nd2 = norm.cdf(-d2) option_price = K * np.exp(-r * T) * (1 - Nd2) - S * np.exp(-q * T) * (1 - Nd1) else: raise ValueError('Invalid option type') return option_price def implied_volatility(S, K, r, q, T, option_price, option_type): obj_fun = lambda sigma: (bs_option_price(S, K, r, q, sigma, T, option_type) - option_price)**2 res = minimize(obj_fun, x0=0.2) return res.x[0] def smile_curve(S, r, q, T, option_type, strike_range, option_prices): vols = [] for K, option_price in zip(strike_range, option_prices): vol = implied_volatility(S, K, r, q, T, option_price, option_type) vols.append(vol) plt.plot(strike_range, vols) plt.xlabel('Strike') plt.ylabel('Implied Volatility') plt.title(f'{option_type.capitalize()} Implied Volatility Smile') plt.show() S = 100 r = 0.05 q = 0.02 T = 0.25 option_type = 'call' strike_range = np.linspace(80, 120, 41) option_prices = [13.05, 10.40, 7.93, 5.75, 4.00, 2.66, 1.68, 1.02, 0.58, 0.31, 0.15, 0.07, 0.03, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.01, 0.03, 0.07, 0.14, 0.25, 0.42, 0.67, 1.00, 1.44, 2.02, 2.74, 3.60, 4.60, 5.73, 7.00, 8.39, 9.92, 11.57, 13.34, 15.24] smile_curve(S, r, q, T, option_type, strike_range, option_prices)

请优化下面的代码使其能够通过输入一组行权价来绘制波动率微笑曲线 import numpy as np from scipy.stats import norm from scipy.optimize import minimize import matplotlib.pyplot as plt def bs_option_price(S, K, r, q, sigma, T, option_type): d1 = (np.log(S/K) + (r - q + sigma**2/2) * T) / (sigma * np.sqrt(T)) d2 = d1 - sigma * np.sqrt(T) if option_type == 'call': Nd1 = norm.cdf(d1) Nd2 = norm.cdf(d2) option_price = S * np.exp(-q * T) * Nd1 - K * np.exp(-r * T) * Nd2 elif option_type == 'put': Nd1 = norm.cdf(-d1) Nd2 = norm.cdf(-d2) option_price = K * np.exp(-r * T) * (1 - Nd2) - S * np.exp(-q * T) * (1 - Nd1) else: raise ValueError('Invalid option type') return option_price def implied_volatility(S, K, r, q, T, option_price, option_type): obj_fun = lambda sigma: (bs_option_price(S, K, r, q, sigma, T, option_type) - option_price)**2 res = minimize(obj_fun, x0=0.2) return res.x[0] def smile_curve(S, r, q, T, option_type, strike_range, option_prices): vols = [] for K, option_price in zip(strike_range, option_prices): vol = implied_volatility(S, K, r, q, T, option_price, option_type) vols.append(vol) plt.plot(strike_range, vols) plt.xlabel('Strike') plt.ylabel('Implied Volatility') plt.title(f'{option_type.capitalize()} Implied Volatility Smile') plt.show() S = 100 r = 0.05 q = 0.02 T = 0.25 option_type = 'call' strike_range = np.linspace(80, 120, 41) option_prices = [13.05, 10.40, 7.93, 5.75, 4.00, 2.66, 1.68, 1.02, 0.58, 0.31, 0.15, 0.07, 0.03, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.01, 0.03, 0.07, 0.14, 0.25, 0.42, 0.67, 1.00, 1.44, 2.02, 2.74, 3.60, 4.60, 5.73, 7.00, 8.39, 9.92, 11.57, 13.34, 15.24] smile_curve(S, r, q, T, option_type, strike_range, option_prices)

请将下面代码中的两张波动率微笑的图绘制到一张图中# -- coding: utf-8 -- """ Created on Sun May 28 18:08:36 2023 @author: lll """ import numpy as np import matplotlib.pyplot as plt from scipy.optimize import brentq from scipy.stats import norm # 定义BS模型计算期权价格的函数 def bs_price(S, K, r, T, sigma, option='call'): d1 = (np.log(S/K) + (r + 0.5sigma**2)T) / (sigmanp.sqrt(T)) d2 = d1 - sigmanp.sqrt(T) if option == 'call': price = Snorm.cdf(d1) - Knp.exp(-rT)norm.cdf(d2) else: price = Knp.exp(-rT)norm.cdf(-d2) - Snorm.cdf(-d1) return price # 定义计算隐含波动率的函数 def implied_vol(S, K, r, T, price, option='call'): def f(sigma): return bs_price(S, K, r, T, sigma, option) - price return brentq(f, 0.001, 10) # 定义计算波动率微笑图形的函数 def smile_vol(S, r, T, vol_list, K_list, option='call'): if len(vol_list) != len(K_list): raise ValueError("Lengths of vol_list and K_list must be equal.") implied_vol_list = [] for K, vol in zip(K_list, vol_list): price = bs_price(S, K, r, T, vol, option) implied_vol_list.append(implied_vol(S, K, r, T, price, option)) plt.plot(K_list, implied_vol_list) plt.xlabel('Strike') plt.ylabel('Implied Volatility') plt.title('Volatility Smile') plt.show() # 示例代码 S = 100 r = 0.05 T = 1 K_list = np.arange(80, 121, 9) vol_call_list = [0.2, 0.3, 0.4, 0.5, 0.6] vol_put_list = [0.6, 0.5, 0.4, 0.3, 0.2] smile_vol(S, r, T, vol_call_list, K_list, option='call') smile_vol(S, r, T, vol_put_list, K_list, option='put')

最新推荐

recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。